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Abstract

Today's innovations rely on scienti�c discoveries of the past, yet only some corporate
R&D builds directly on scienti�c output. In this paper, we analyze U.S. patents to in-
vestigate how �rms generate value by building on prior art �closer" to science and estab-
lish three new facts about the relationship between science and the value of inventions.
First, we show that patent value is decreasing in distance-to-science. Patents building
directly on scienti�c publications are on average 26% more valuable than patents in
the same technology which are disconnected from science. Patents closer to science
are also more likely to be in the tails of the value distribution (i.e., greater risk and
greater reward). Next, we use patent text analysis to show that patent value increases
with patent novelty. Third, we �nd that science-intensive patents are more novel. We
discuss �rm heterogeneity and the causes behind the science premium. Overall, �rms
that consistently use science for invention produce higher value patents generally, and
especially when they �build on the shoulders" of their own scienti�c work.
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1 Introduction

While scienti�c advances are the bedrock of industrial R&D, only some of those activities

build directly on science�translating discoveries from laboratories and scienti�c publications

into novel inventions and commercial products. Other corporate innovation e�orts rely only

indirectly on science�experimenting, tinkering, optimizing, and inventing without the aid

(or constraints) of �the republic of science,� but still using tools and technologies enabled

through centuries of scienti�c advance. Firms' level of engagement in science is an important

component of their R&D strategy and a potential source of talent and competitive advantage

(Henderson and Cockburn, 1994; Cockburn et al., 2000; Stern, 2004). Yet, surprisingly little

is known about how building on scienti�c knowledge a�ects the value of a �rm's inventions.

In this paper, we investigate how �rms generate value by inventing �on the shoulders of

science.� This question is critical for R&D strategy, as investing in the expertise required

to absorb scienti�c knowledge (e.g., in-house scientists or cooperative projects with univer-

sities) is both capital- and time-intensive. Such costs are only justi�ed if managers expect

a signi�cant science premium, i.e., that inventions based on science are more valuable than

inventions that do not use science as an input.

While the social value of science has been immense, formal science is not an obvious

source of competitive advantage. Scienti�c advances are usually published, so that everyone

can access them. Thus, basic theory would suggest that any science premium should be com-

peted away by entrants, and access to science should not confer a sustainable competitive

advantage. Furthermore, popular discourse in the technology sector and prominent strands

of the management literature are highly skeptical of science-based inventing, instead favoring

the view that valuable inventions result from applied industrial engineering and user inno-

vation (see Section 2.1). By quantifying the relative value of inventions by their proximity

to scienti�c publications, we aim to inform R&D strategy and adjudicate between opposing

narratives on the (private) value of science. After empirically establishing a proximity-to-

science premium, we further probe why science-led R&D produces a di�erent patent value
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distribution. Our analysis provides evidence that science is primarily a tool for exploring

and articulating novel idea space�propelling inventive activity towards both higher risk and

higher reward areas. Finally, we evaluate how �rms di�er in their ability to capitalize on the

bene�ts of science. We discuss frictions that inhibit �rms' application of science and create

persistent performance di�erences in their invention quality.

To quantify the value of science in corporate R&D, we measure how di�erent degrees of

building on science contribute to the private value of patents. Any attempt to measure this

contribution is complicated by the fact that science plays a larger role in some technologies

than in others (Stephan, 1996). This makes it di�cult to distinguish how much of the value of

an invention is due to its proximity to science and how much of it is technology-speci�c. We

deal with this challenge with the help of a metric for a patent's level of science-intensity. By

comparing the values of more and less science-intensive patents within di�erent technology

classes, we can isolate the science component and the technology component of the value of

each invention.1

To classify patents with respect to their distance-to-science, we build on Ahmadpoor and

Jones (2017). When a company �les for a patent, it has to list all prior art on which the

patents build, including scienti�c articles. This provides a direct link between the patent

and the scienti�c knowledge of which it makes use. A patent that directly cites a scienti�c

paper is assigned a distance of one (D=1) to science. A patent that cites a (D=1)-patent

but does not cite a scienti�c article itself has a distance of (D=2), and so on. We match

this data with the patent values from Kogan et al. (2017), which we also refer to as KPSS

(as shorthand). KPSS derive patent values from excess stock returns of the �ling company

around the date of the patent publication. Combining these two data sets, we can calculate

1Conceptually, we view our analysis as a conservative estimate of the private value of science. Beyond
the direct value captured through patents, scienti�c knowledge may generate private value through several
additional channels. For example, �rms bene�t from the productivity-enhancing features of working with
science-enabled communications technologies and computing systems breakthroughs. Both patented and
non-patented inventions rely on knowledge generated by the scienti�c community, even when the practitioners
involved do not formally cite scienti�c journal articles. For example, �rms routinely hire Ph.D. scientists
and engineers whose knowledge and techniques are products of their frontier scienti�c training, even when
their subsequent R&D output does not link directly to published research.
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the average patent value for a given distance-to-science for 1.1 million U.S. patents �led

between 1980 and 2009.

Our main analyses describe three key correlations. First, we �nd that patents directly

based on science (D=1) have an average private value that is 26% greater than patents �led

in the same technology class and year, but only loosely related to science (D=4). Patents

with a distance of two (D=2) or three (D=3) from science have private values of 18% and

7% greater than the (D=4) group, after controlling for technology × year. This propagation

of value generated by science to patents that are not directly science-based suggests that

scienti�c progress can be the �remote dynamo of technological innovation� throughout the

economy (Stokes, 2011, p.84), with e�ects beyond the immediately useful applications. Yet,

we also show that more science-intensive patents are more risky; i.e., more likely to end up

in the tails of the value distribution. In auxiliary results, we show that our main �ndings are

stable when using alternative measures for distance-to-science, based on text similarity and

when using measures for patent value based on citations, patent scope, and patent litigation.

As our second �nding, we identify a link between patent novelty and private sector value.

To establish this link, we develop a new measure of patent novelty based on the novelty of

word combinations in the text of the patent. For this purpose, we calculate for each patent

the probability that a given combination of words has been used before. We call a patent

�novel� if it contains low-probability word combinations. We document that patent novelty

predicts the value of patents in a very similar way to a patent's science-intensity.

Third, we establish that the content of more science-intensive patents is more novel and

that the novelty of the content decreases with distance-to-science. In addition to the cor-

relation between novelty and distance-to-science, these characteristics appear to contribute

independently to patent value. Both patents that are below and above median novelty, have

average valuations increasing in proximity to science, but novel patents enjoy slightly larger

average values at each distance from science.

These results pose a puzzle. If there is a signi�cant science premium, why do some but
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not all companies invent �on the shoulders of science�? In the last section of this paper, we

evaluate whether imperfect information, risk aversion, a value cli� in the supply of ideas, or

R&D cost heterogeneity can account for this phenomenon. While all of these reasons might

account to some degree for di�ering company R&D strategies vis-a-vis science, we show

supporting evidence of R&D cost heterogeneity being a key explanation. Thus, our analysis

implies that the overall payo� from building on science depends on both the science premiums

reported in this paper and the cost of the �rm's (cumulative) investment in absorptive

capacity.

Our paper contributes to the literature in three main ways. First, it highlights that

science-driven R&D is associated with substantial value in the private sector, not only di-

rectly, but also indirectly (i.e., D>1), and it quanti�es the respective value contributions in

percentage and dollar terms. Regarding intent, this is close to the early surveys of Edwing

Mans�eld, which showed that in the 1980s and the 1990s, around 20 percent of all newly

introduced products bene�ted substantially from recent academic science (Mans�eld, 1991,

1995, 1998). The recent literature primarily focuses on patents that are directly science-based

and on value measures such as forward citations and patent renewal payments, which re�ect

only indirectly and partially the private value of the patents for the owner. Sorenson and

Fleming (2004) show that science-based patents have more follow-on citations. Poege et al.

(2019) �nd that the quality of cited scienti�c articles is positively related to various mone-

tary and non-monetary measures of patent value. Ahmadpoor and Jones (2017) document

that forward citations decrease with distance-to-science, and that patents close to science

are more likely to be renewed. The bene�ts of academic science and industry seem to �ow

both ways, as academic-industry collaboration and citation boosts quality and productivity

for both sides (Bikard et al., 2019; Bikard and Marx, 2020).

By estimating the private value of science-based patents, our results shed light on �rms'

incentives to use science in the innovation process. The �ndings suggest that investments

in the �rm's ability to build on science is a source of competitive advantage� one that is
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not equally available to established �rms that lack experience with science-based invention

(Cohen and Levinthal, 1990; Henderson and Cockburn, 1994). Furthermore, our �ndings

support the view that the prevailing decline in corporate in-house R&D is more likely due

to shifts in organizational boundaries or in the costs of performing in-house R&D, than in

the private gains of translating science into inventions (Arora et al., 2018).

Second, our results demonstrate a key risk-vs-reward tradeo� in science-based innovation.

Our �ndings show that proximity to science is not only associated with greater average

private patent values, but also with more risk�i.e., the likelihood of extreme outcomes on

both ends of the value distribution. Such tail-risk suggests that science-based R&D is akin

to the exploration arm of classic �explore vs. exploit� models (March, 1991; Manso, 2011;

Azoulay et al., 2011; Akcigit and Kerr, 2018). Even if the expected value of a science-

based patent is larger, risk-aversion or path dependence in R&D decision-making (Cyert

et al., 1963; Argote and Greve, 2007; Hall and Lerner, 2010; Eggers, 2012; Chan et al., 2007;

Krieger et al., 2021) might lead �rms away from science-driven R&D.

Third, our paper takes an important step towards understanding the role of science in

patent value by showing that science and the novelty of patents go hand in hand. Basic

science is frequently credited with stimulating technological innovations. In the context of

World War I, Iaria et al. (2018) have recently shown that scientists produce more patent-

relevant scienti�c articles if they have access to frontier knowledge. Fleming and Sorenson

(2004) argue that science alters inventors' search processes and leads them to useful new

knowledge combinations. By linking patent novelty to patent value and science to patent nov-

elty, we provide a rationale for why science matters for private sector innovation�enabling

a di�erent, and more fat-tailed, type of technology search.2

2Thus, our study complements the indirect evidence in Fleming and Sorenson (2004), which shows that
science increases forward citations in �elds in which it is hard to innovate. Recently, Kelly et al. (2018) have
shown that the value of patents as measured by Kogan et al. (2017) is negatively correlated with their text
similarity to earlier patents. We add to these �ndings by demonstrating that patent novelty systematically
correlates with the scienti�c content of a patent, measured both by citation distance and by text similarity
between articles and patents. In a new working paper Arora et al. (2021a) use similar data to evaluate
how participation in science and �rst-mover advantage (in building on science) a�ects the private value of
patents. Di�erent from our analysis, the authors focus on within-�rm variation.
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2 Context: Science in Invention

In this section, we �rst outline competing narratives on whether science makes a valuable

contribution to private sector inventions. In a second step, we explore the question of how

science can help companies invent.

2.1 Competing narratives

The canonical anecdotes of technology history are �lled with famous private sector inven-

tions that used modern science as a springboard for breakthroughs. Ferdinand Braun and

Guglielmo Marconi could not have developed the wireless telegraph before Heinrich Hertz

demonstrated the existence of electromagnetic waves. The development of the transistor at

the Bell Laboratories would have been di�cult to imagine without the scienti�c understand-

ing of the physics of semiconductors. Similarly, the biotechnology industry was born out

of the pioneering scienti�c work of academic scientists-turned-entrepreneurs like Genentech

founder Herbert Boyer.3 However, technology and management scholars have argued that

these cases, while indeed powerful examples, are the exception rather than the rule.4 This

alternative view places applied industrial engineering and user innovation at the center of the

innovation process. Scholars have frequently noted how novel science gets �trapped in the

ivory tower,� or stalls in commercialization due to frictions in knowledge �ows, intellectual

property, contracting, and the reliability of academic science (Goozner, 2005; Butler, 2008;

Harris, 2011; Osherovich, 2011; Freedman et al., 2015; Bikard, 2018).

Recent trends in the corporate landscape also cast doubt on the relative value of science on

private sector innovation. Large �rms have retreated from internal scienti�c research (Arora

et al., 2018, 2020), while venture capital investments have moved towards faster experimen-

tation and less capital-intensive software-based business models (Ewens et al., 2018). In the

3Boyer published some of the seminal papers on recombinant DNA as a professor at the University
California, San Francisco prior to cofounding Genentech alongside venture capitalist Robert Swanson.

4These skeptics assert that inventions are born from other sources outside formal scienti�c study (Kline
and Rosenberg, 1986; von Hippel, 1988).
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cultural and business zeitgeist, slow-moving research endeavors like PhDs, postdocs and peer

review do not conform to a technology era dominated by the famous Mark Zuckerberg motto

�move fast and break things.�5 This shift might re�ect a gradual realization that the rewards

of translating frontier science into products are not worth their challenges�or at least in

comparison to more narrowly focused applied engineering and software development activi-

ties. Alternatively, science-based innovation might indeed provide superior expected private

value relative to other sources of innovation, in which case the corporate withdrawal from

in-house science is merely a symptom of R&D risk aversion, changes in the cost structure of

science-intensive inventing, or broader trends in the organization of corporate innovation.6

2.2 Science as tool for navigation and novelty

Why might building on science lead to a higher expected value of corporate patents? For

the purpose of invention, science may serve as a map for technological search (Fleming

and Sorenson, 2004). With this perspective, science enables more e�cient invention by

documenting both promising paths (strong �shoulders� to stand on) and dead-ends to avoid.7

However, the �republic of science� often prizes speed, novelty and individual credit over search

e�ciency (Partha and David, 1994; Stephan, 2012). Thus, even though science o�ers tools

that push the technology frontier to new heights, science also generates (more than) its fair

share of irreproducible �ndings and �shaky shoulders� for both scientists and inventors to

5While product cycles have sped up and R&D teams have adopted �lean� methodologies at technology
�rms, evidence shows that the organization of academic science has moved in a di�erent direction. Scienti�c
productivity increasingly requires more specialization, larger teams, and more resources in order to overcome
the �burden of knowledge� and navigate complex problems (Jones, 2009; Wuchty et al., 2007; Bloom et al.,
2020).

6For example, the move towards �open innovation� and accessing new innovations through the markets for
technology (Chesbrough et al., 2006; Arora et al., 2004; Gans and Stern, 2003; Mowery, 2009; Bhaskarabhatla
and Hegde, 2014) has allowed downstream �rms in some industries to forgo scienti�c research under their own
roof, while still accessing the technological o�spring of those research activities via markets for technology.

7At the extreme, scienti�c articles not only provide a �map� or �foundation� for new inventions, they also
directly produce the invention itself. Patented inventions and scienti�c projects are sometimes co-produced
and co-disclosed as patent-paper pairs (Murray, 2002). These pairs describe the same (or highly similar)
discoveries and may be best identi�ed using their overlapping language (Magerman et al., 2015). In the
words of a patent attorney, such patent applications usually start by �slapping a patent coversheet� on the
text of a draft scienti�c article. On average, patent-paper pairs are associated with more forward citations
to the scienti�c article (Murray and Stern, 2007).
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build on (Osherovich, 2011; Begley and Ellis, 2012; Begley and Ioannidis, 2015; Freedman

et al., 2015; Azoulay et al., 2015). Thus, science's incentive system pushes the methods,

ideas, and language of science towards the exploration end of the explore-exploit spectrum

(March, 1991; Azoulay et al., 2011; Akcigit and Kerr, 2018). More novelty is associated with

both more risk and more (potential) reward.

In summary, while there is reason to believe that scienti�c input can contribute to the

inventive process, there is no consensus on the value of that input. In the next section we

outline the data that we use to adjudicate this open question.

3 Data

Our starting point is a dataset which contains information on the monetary value of 1.8

million public �rm patents from 1926 to 2009 (Kogan et al., 2017). The private value of the

patent is estimated by studying movements in stock prices following the days that patents

were issued to the �rm. Speci�cally, the value is approximated using the abnormal stock

market return of the �ling company within a narrow window around the grant date of the

patent.

For each of these patents, we calculate its �distance" to prior scienti�c advances using

the method of Ahmadpoor and Jones (Ahmadpoor and Jones, 2017). We use information

on 2.5 million patents issued by the U.S. Patent and Trademark O�ce (USPTO) from 1980

to 2010, and information on journal articles indexed by Microsoft Academic (Sinha et al.,

2015). We then locate patents that directly cite journal articles; i.e., patents to which

practical inventions and scienti�c advances are directly linked (Marx and Fuegi, 2020). A

patent that directly cites a scienti�c paper is assigned a distance of one (D=1) to science. A

patent that cites a (D=1)-patent, but does not cite a scienti�c article itself, has a distance

of two (D=2), and so on (see Figure A.1 in Appendix A.1). The distance for each patent to

science is thus de�ned by the minimum citation distance to the boundary where there is a
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direct citation link between patent and scienti�c article.

Combining the information on patent values and citation links, we construct a dataset

that contains patent values for 1.1 million U.S. patents �led between 1980 and 2009. 21% of

all patents directly cite a scienti�c article (D=1), 55% are indirectly based on science (D=2

and D=3) and 24% are not based on science (D=4 or larger). The (unadjusted) average

value of a patent is $12.9 million in constant 1982 U.S. dollars.

Our primary measure of novelty is built from data on words used patents Arts et al.

(2018). We calculate how often a given pairwise word combination occurs relative to other

patent word combinations, up to a given year. In additional analyses we also use text-based

measures of patent similarity to scienti�c articles cited in the patent, word age, and structural

novelty of patented chemicals.

Appendix A.1 gives a detailed description of all the data construction and sources.

Examples: Distance-to-Science Speci�c examples are useful for understanding the

range of inventions represented in the data. Even among well-cited patents, we observe large

qualitative di�erences between patents by their distance from science. Take Coca Cola's 1997

patent titled �Apparatus for icing a package� (5671604). The solo-inventor patent describes

a vending machine refrigeration system, featuring a spray nozzle that cools the stored items

with a water mist. It has no citations to science, and a distance from science of �ve (D=5).

The patent contains seven �gures, all of which are detailed technical drawings of the cooling

system and its 80 di�erent enumerated components (e.g., control valves, linear actuator,

vortex cooling devices).

In the same technology class as the Coca Cola vending machine patent (G07F, �Coin-

freed or like apparatus�), one can also �nd McKesson Automation's patent number 7010389,

�Restocking system using a carousel,� intended to aid in dispensing of medical supplies.

The patent's �gures bear considerable similarity to the Coca Cola patent. Both include

detailed drawings of a motorized storage system that brings items to a stationary user.
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Unlike the soda vending machine, the McKesson patent includes a computer, printer, and

hand-held wireless device system. Furthermore, the patent cites 15 di�erent scienti�c articles

including some from journals such as the International Journal of Bio-Medical Computing

and the American Journal of Hospital Pharmacy. These articles present evidence on how the

implementation of similar database systems improved operations at hospitals, as well as on

the health bene�ts of deploying monitoring systems to prevent toxic multi-drug interactions.

The actual variation in how patents describe their inventions and build on prior art is

impossible to capture meaningfully in a small set of illustrative examples, and the corpus

of patents is so large that a counter-example is always just a simple Google search away.

Thus, in our regression analyses that follow, we emphasize that our methods are useful for

describing average correlations between groups. Of course, there are obvious di�erences

between technologies such as medical devices, telecommunications, transportation, machine

tools, and food processing. Therefore, many of our regression speci�cations use technology

class × year �xed e�ects to restrict comparisons to more comparable subgroups.

Appendix A.2 provides additional examples using patents from CPC class A61L (�Meth-

ods or apparatus for sterilising materials�). Across examples, the distinguishing features of

science-based patents have more to do with their process or R&D than their complexity or

sophistication. Patents that are more proximate to formal science use the tools and language

of science to search for a technology solution, identify its novelty, and communicate its value.

Appendix A.2 also describes the patent sample, with summary statistics broken down by

distance-to-science (Tables A.1, A.2 and A.3). Patents closer to science are di�erent across

a number of interesting dimensions. Most notably, patents closer to science tend to have

more inventors, shorter claims and take longer for the USPTO to process. Their prior art

also looks di�erent, as science-based patents tend to build on a larger and broader scope set

of backwards citations.
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4 Results

In the following section, we �rst map the relation between private sector value and distance-

to-science. We show that patents closer to science have a higher value than patents further

away from science. In a second step we show that patents that are more novel are also more

valuable. Lastly, we show that patents closer to science are also more novel, highlighting a

potential reason why science-based patents are more valuable.

4.1 The private value of patents by their distance-to-science

Our �rst fact documents the relationship between patent values and distance-to-science.

We show that more science-intensive patents are on average more valuable, but also riskier;

i.e., they are more likely to be in the tails of the value distribution.

[Insert Figure 1 Here]

We start by presenting how relative dollar values of patents di�er by distance from

science. To estimate relative percentage (%) di�erences in KPSS values across distance-to-

science groups, we run ordinary least squares (OLS) regressions with (D=4) as the baseline

(omitted) distance-to-science group and KPSS values as the outcome.8

We then convert the regression coe�cients to percentage di�erences relative to (D=4)

average values. As shown in Panel (a) of Figure 1, a science-based patent that directly

cites an academic article (D=1) has an average value that is 82% greater than a patent

four degrees removed from science (D=4). This value decreases as the distance-to-science

increases. Patents with a distance of two or three have average values 44% and 14% higher

than those in (D=4), respectively. When patents have a distance from science larger than four

(D=5, D>5 or �unconnected�), their average values are between 6% and 16% less valuable

8Distance-to-science of four as the baseline is a basically arbitrary choice, but one informed by the data,
since the relative value premium begins to �atten after (D=4). Intuitively, the connection to scienti�c
publications is quite tenuous at (D=4), and using this baseline group also ensures that our estimates are
somewhat conservative, as oppossed to using higher degrees as the baseline.
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than those with distance of four. Column (1) of Table 1 presents the same results in regression

form.

[Insert Table 1 Here]

Our preferred speci�cations report patent value di�erences in relative (%) terms, but

to acquire a sense of the order of magnitude, we present the same results in levels ($USD)

in Appendix B.1 (Table A.4).9 We interpret the dollar magnitudes with caution, adjusting

the KPSS values downwards using the most conservative estimate of ex-ante probability

of patent grant. Doing so de�ates the values by 12%.10 Thus, we �nd that science-based

patents that directly cite an academic article (D=1) have an average value of $15.82 million

dollars, which is $8.27 million more than the average value of patents with (D=4) and $8.69

million more than those unconnected to science.11 The average patent values decline to

$12.49, $9.90, and $8.69 million for distances of two, three and four, respectively.

The higher average value of science-based patents re�ects an upward shift in the value

distribution of patents with higher science intensity. Panel (b) of Figure 1 plots the share

of science-intensive patents (D=1, D=2 and D=3) and the share of less science-intensive

patents (D=4, D=5, D>5 and unconnected) over the percentiles of the value distribution of

all patents. If the value distribution of more science-intensive patents were the same that of

less science-intensive patents, the share of patents at each percentile should be 1%. Figure 1,

9To arrive at dollar values for individual patents, (Kogan et al., 2017) makes a number of assumptions
about the distribution of �rm returns and the (ex-ante) probability of patent grants. While the (Kogan
et al., 2017) results appear fairly robust to alternative distributional assumptions (see Footnote 11 in (Kogan
et al., 2017)), we focus on percentage di�erences as our primary results since our interest is in the relative
value di�erences patents of di�erent characteristics. Doing so allows us to apply the consistent quantitative
valuation method of (Kogan et al., 2017), without relying too heavily on any assumptions that move the
magnitude in any direction.

10Carley et al. (2015) �nd that acceptance rates vary between 50% and 60% in the 1991�2001 period. We
use the low end of that range (50%) instead of the average (56%), which is used in Kogan et al. (2017).
This adjustment de�ates all the patent dollar values by 12%. Conceptually, this adjustment provides a more
conservative set of estimates by increasing the amount of market information �surprise� associated with the
patent grant. That increased surprise could be a result of more conservative expectations about the likelihood
of patent issuance, or imperfect information regarding the existence of pending patent applications. Table
A.5 in Appendix B.2 shows how di�erent assumptions on patent grant probabilities a�ect patent valuations.

117.13/8.69 = 0.82%, the percentage di�erence in value of a science-based patent relative to (D=4) patent
mentioned above.
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Panel (b) shows that there are fewer science-intensive patents at the lower end of the value

distribution, while there are more at the upper end. The pattern for less-science-intensive

patents is (mechanically) reversed. They are overrepresented at the lower end of the value

distribution, while they are signi�cantly underrepresented at the upper end.

We next examine whether this regularity between distance-to-science and patent value

simply re�ects di�erences across technologies, perhaps because science is used predominantly

in technologies that are on average more valuable. Stephan (1996) captures the ties between

science and particular industries, writing that �to a considerable extent the scienti�c en-

terprise evolves in disciplines that from their beginnings have been closely tied to �elds of

technology.� This is why we consider how much of the patent value is technology-speci�c

and how much can be attributed to the value of science.

To separate science-related from non-science-related patent value, we need to make as-

sumptions about the data-generating process. We assume that the value of a patent is

generated by a technological component, a proximity to science component, and an idiosyn-

cratic component, and that these components are additively separable. The technological

component is assumed to be the same for all patents with the same technology class and the

same �ling year, independent of their distance to science. The science component is present

in patents closely based on science, while it is absent in patents unrelated to science. The

idiosyncratic component captures the patent value residual after accounting for the science

and technological components. We assume that the idiosyncratic component has an expected

value of zero.

Under these assumptions, we can isolate the technological component through the value

of patents that are distant from science. The value of non-science-related patents is the sum

of the technological component and the idiosyncratic component, where by de�nition, the

proximity to science component is zero. As the technological component is assumed to be the

same for all patents in the same technology class and year, we can �lter out the idiosyncratic

component by taking averages.
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Yijt = α0 + α1 × (D = 1)i + α2 × (D = 2)i + α3 × (D = 3)i

+α4 × (D = 5)i + α5 × (D > 7)i + α1 × (D = unconnected)i + δjt + εijt

(1)

where Yijt is the patent level outcome (e.g., KPSS value, citations, text novelty) for patent

i that is associated with (CPC 4-digit) technology class j and �ling year t. The variables

(D=1,2,3,5,>5, unconnected) are indicator variables for distance-to-science, where (D=4) is

the reference category. δjt is the technology class × �ling year group �xed e�ect (i.e., the

technology component).

Figure 1, Panel (c) and Table 1, Column (2) present the average patent value % premium�

within technology class and �ling year�relative to (D=4), by distance-to-science. Patents

that are directly based on science (D=1) have an average science-value 26% greater than that

of the average (D=4)-patent of the same technology class-year. Patents indirectly based on

science with distances of (D=2) and (D=3) have implied values of 18% and 7% greater than

(D=4) patents, respectively. These values are lower than the raw values presented in Panel

(a) of Figure 1�indicating that science-intensive patents are more prevalent in high-value

technology classes than in low-value classes. However, the within technology-year estimates

mean that proximity to science has a meaningful relationship with patents' private values.

Our main patent value regression speci�cations do not include �rm �xed e�ects because

our primary goal is to understand how the choice to build on science is associated with patent

value. While those choices vary project by project, they may also re�ect �rm-level decisions

on how to organize R&D. As such, some of the average e�ects in our distance-to-science coef-

�cients may be due to di�erences in �rm quality and capabilities. Firms that tend to invent

closer to the scienti�c frontier may simply produce better (or worse) patents on average�

regardless of the given patent's distance-to-science. Furthermore, �better �rms� may invent

closer to the scienti�c frontier because those �rms, as a function of their competitive position,

have both the talent and resources to engage in such costly exploration.
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However, the �rm-sorting explanation does not fully explain the results. Once we account

for �rm-speci�c factors, the overall patterns from Table 1 still hold. Appendix B.3 and Table

A.6 describe our approach and the results with �rm �xed e�ects. Overall, we �nd that that

average patent values are decreasing in distance from science when we estimate the same

same coe�cients within �rms. Controlling for �rm �xed e�ects (along with technology ×

year), we �nd that (D=1) patents still have an average value between 9%�25% greater than

patents at the same �rm with distances of (D=4), although the dollar amount of the premium

is smaller. Overall, the �rm �xed e�ects results are consistent with some �rm-quality sorting

into science-based innovation, yet the proximity to science premium still persists within

�rms.

In Figure 1, Panel (d), we show the distribution of the sum of the science value component

and the idiosyncratic component; i.e., the residual in value that is not due to the technology

and year, across the percentiles of the value distribution.12 Less science-intensive patents

tend to have values close to the median of the value distribution. Science-intensive patents,

by contrast, are more likely to have a value that is in the extremes of the science value distri-

bution. Relative to a (D≥4)-patent in the same technology and year, more science-intensive

patents are more likely to be in the upper and the lower tails of the value distribution.13

This suggests that the value premium of science, over and above the value of the technology,

comes at the price of an increasing risk of tail outcomes. One potential explanation could

be the high rate of irreproducible research results which has been estimated as high as 50

percent (Osherovich, 2011; Freedman et al., 2015). Thus, the science value premium may to

some extent be the compensation for the risk that investors associate with science-intensive

patents.

12We cannot separately identify the science-value from the idiosyncratic value component for a particular
patent.

13Table A.9 in Appendix B.8 shows that the relationship between distance-to-science and the probability
of a patent being in the top or bottom 5% of the value distribution. After controlling for technology and
�ling year, we see that patents closer to science are more likely to be in both extreme ends of the value
distribution.
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Alternative Measures of Patent Value: Citations, patent scope and litigation

Patent private value is the outcome of interest for pro�t-maximizing �rms; however, other

proxies for value are informative as robustness checks and links to other types of social value

(e.g., knowledge �ows, spillovers). Columns 3-6 in Table 1 explore three other proxies for

patent value: forward citations, patent scope and propensity to be involved in litigation.

The results are broadly consistent with the KPSS value regressions. Column 3 shows

the patent forward citation results. Controlling for tech class × year �xed e�ects, we �nd

that patents with (D=1) average 99% more forward citations than patents with (D=4). The

relative di�erence is even stronger than the stock market valuation premium�indicating

that social returns through knowledge �ows may be above and beyond what the inventor

�rms capture.14 The citation premium is is 36% and 9% for (D=2) and (D=3), while patents

with (D≥5) have fewer citations than the (D=4) group.

Next, we evaluate the relationship between distance from science and patent scope. In-

tuitively, patents with greater scope are more valuable by claiming a broader swath of in-

tellectual property space for their assignees, who can then more easily exclude competitors

from their technology's domain.15 We merge our set of patents to the patent scope index

from Kuhn and Thompson (2017), and run an ordinary least squares speci�cation, including

tech class × year �xed e�ects. Column 4 shows that patent scope is increasing in proximity

to science. The di�erence in scope between a (D=1) and (D=4) patent within the same

tech-year is equivalent to a 100% increase over the sample mean.16

Columns 5 and 6 repeat the exercise with the binary litigation outcome, both with and

without tech class × year �xed e�ects. While we can only measure litigation as a binary

14That said, we recognize that patent-to-patent citations are an imperfect measure of knowledge �ows
(Roach and Cohen, 2013; Marx and Fuegi, 2020; Kuhn et al., 2020), and unlike KPSS, they are an ex-post
measure of quality, so we cannot easily quantify the gap between private and social value capture.

15Kuhn and Thompson (2017) show that a patent's scope may be reliably measured using the number of
words in its �rst claim.

16The sample mean is 0.12 (�Mean Dep.� in Column 4 of Table1) and the regression coe�cient of (D=1)
is 0.12.
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event, it is a useful signal of patent value.17 Patent litigation is expensive, so �rms will (for

the most part) only �ght in court for patents that are believed to be valuable.18 With and

without class × year �xed e�ects, we �nd that the likelihood of litigation is increasing in

proximity to science. Column 5 indicates that patents with (D=1) have a more than double

increase in likelihood of litigation relative to D=4 patents (10.36 vs. 4.39 per 1,000 patents).

Column 6 shows that even within tech class and vintage, patents that build more directly

on science are more likely to end up in court. Taken together with the KPSS, citation and

scope results, this �nding shows that patents which build more directly on science are not

only valued higher, but �rms judge them more worthy of expensive courtroom battles in the

years post-grant.

Additional Results and Robustness

Appendix B presents a number of additional results and robustness checks. Appendix B.4

shows the results by broad (1-digit) CPC classes. Appendix B.5 shows how the distance-to-

science measure e�ectively captures which patents draw more directly on the language and

ideas of their associated scienti�c journal articles. Appendixes B.6 and B.7 show robustness

to alternative distance-to-science measures. Appendix B.8 describes the regressions exam-

ining the tails of the value distribution. We show that the main distance-to-science results

hold up across di�erent percentiles of the value distribution in Appendix B.9.

17The dependent variable comes from merging our data to the USPTO's Patent Number and Case Code File
dataset, a comprehensive link between patent litigation cases in U.S. district courts and patents between 2003
and 2016. 94% of the court cases are coded as patent infringement suits, with the remaining cases involving
disputes around ownership/inventorship, patent validity, royalties, false markings, and other procedural
issues involving patents.

18The American Intellectual Property Lawyer's Association (AIPLA) estimated litigation costs of
$250,000 � $950,000 for cases with less than $1 million at risk, and between $2.4 million and $4 mil-
lion for cases with more at stake (https://apnews.com/press-release/news-direct-corporation/
a5dd5a7d415e7bae6878c87656e90112)
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4.2 Patent novelty and patent value

Next, we study whether the value of a patent is related to the novelty of its content. If the

goal of science is to advance knowledge by making new discoveries, then inventions relying

directly on science have the potential to introduce more novel ideas. For these analyses, we

construct a new measure of patent novelty. Using this measure, we establish the second

fact of the paper: that patent novelty predicts patent values.

Measuring patent novelty

In the history of technology and innovation, inventions are often conceptualized as the out-

come of successfully combining ideas, either by combining new ideas or existing ones in a

novel way. In A History of Mechanical Inventions, Abbott Payson Usher writes: �Invention

�nds its distinctive feature in the constructive assimilation of preexisting elements into new

syntheses, new patterns, or new con�gurations of behavior� (Weitzman, 1998). Following

this concept of invention as a novel combination of ideas or resources, we develop a new

measure for patent novelty that is based on the content of the patent. More speci�cally, we

measure how novel the combinations of words are that are used in a patent. For example,

the word �mouse� combined with the word �trap� was used in patents since at least 1870.

By contrast, the word �mouse� was combined with the word �display� for the �rst time in

1981 in Xerox's pioneering patents.19

Our measure of patent novelty is constructed as follows. In a �rst step, we count how often

a particular pairwise combination of di�erent words was used in the abstracts of previous

patents up to the �ling year. The sets of words for each patent are from the Arts et al. (Arts

et al., 2018) dataset. We then divide this count with the total number of pairwise word

combinations up to the �ling year of the patent. We denote this ratio as the probability of

a word combination. In a second step, we take the average over the respective probabilities

19Though notably, the term �computer mouse" was in colloquial use starting as early as 1968, when Doug
Engelbart �rst demonstrated the device after �ling the �rst computer mouse patent in 1967 under the title
�X-Y Position Indicator for a Display System.� See https://dougengelbart.org/.
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of all pairwise word combinations within a patent to determine the average probability per

patent. The smaller the average probability of pairwise word combinations, the more novel

the pairwise word combinations used in the particular patent. We call patents with a smaller

average probability more novel. Appendix B.10 provides similar analyses using alternative

de�nitions of patent novelty such as new words and word age (Figure A.7), as well as chemical

novelty (Table A.8). The correlations between these alternative measures and KPSS patent

value and distance-to-science are quite similar to our main measure of novelty.

Novelty and patent value

Figure 2 shows that the novelty of a patent � measured by the average probability of word

combinations � predicts the patent value and the likelihood that the value of a patent is in

the tails of the distribution. Panel (a) shows that there is a positive relationship between

novelty and patent value. The pattern suggests increasing returns to novelty, as the marginal

gains from novelty increase as word combinations become more rare. Panel (b) indicates that

a higher patent novelty is associated with an upward shift in the patent value distribution.

We split all patents into those that have a below average probability of word combinations

(i.e., higher novelty) and those that have an above average probability. Panel (b) shows that

more novel patents (i.e., with rare word combinations) are less likely to be at the lower end

of the value distribution and more likely to be at the upper end. The picture is reversed for

patents that are less novel.

[Insert Figure 2 Here]

In Panel (c), we plot the relationship between patent novelty and patent value relative

to (D=4)-patent values of the same technology and the same year. We also residualize the

novelty measure (x-axis), such that x-axis values below (above) zero represent combinations

of words that are less (more) common than the average word combinations within technology-

year. Again, there is a clear positive relationship between novelty and science value.20 In

20The regression version of this analysis is reported in Columns 1 and 2 of Table 2 (without and with
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Panel (d), we show the distribution of patent values for patents with below and above average

probability of word combinations relative to the probability of a (D=4)-patent in the same

technology and year. Highly novel patents are again more likely to be in both tails of the value

distribution, while patents with a lower novelty are in the middle of the value distribution,

relative to its technology and year. Thus, as in the case of distance-to-science, novelty is

associated with a value premium over and above the technology-related value component,

but also with higher risk. Kline and Rosenberg (1986) captured the spirit of this relationship

in writing, �newness is not, by itself, an economic advantage.�

[Insert Table 2 Here]

4.3 Patent novelty and distance-to-science

As argued above, there are two complementary ways in which science can increase patent

novelty. First, science can provide new insights that can be combined with older ideas. This

view is akin to how Vannevar Bush described the relation between science and invention in

his in�uential 1945 report Science: The endless frontier :

Basic science (...) creates the fund from which the practical applications of knowl-

edge must be drawn. New products and new processes do not appear full-grown.

They are founded on new principles and new conceptions, which in turn are

painstakingly developed by research in the purest realms of science. Today, it

is truer than ever that basic research is the pacemaker of technological progress.

(Bush, 1945).

This description is thought to re�ect the realities in the large science-intensive corporate

laboratories of the post-war period (Smith and Hounshell, 1985; Godin, 2006).

technology × year �xed e�ects). This speci�cation di�ers from the one presented in Figure 2, because here
we take the averages over all patents in a technology and year combination and not only over patents with a
distance of D=4. The negative correlations in both speci�cations indicate that that patent value is decreasing
in the likelihood of word combinations.
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Second, science can guide the inventor to more fruitful combinations of known elements

(Rosenberg et al., 1990; Fleming and Sorenson, 2004). According to mathematician Henri

Poincare, �the true work of the inventor consists in choosing among (...) combinations so

as to eliminate the useless ones or rather to avoid the trouble of making them� (Weitzman,

1998).

Science can help in determining which combinations not to pursue by providing an under-

standing of why a particular combination might or might not work. For example, enormous

amounts of energy and ingenuity were wasted by alchemists on attempts to transform lead

into gold before science demonstrated that nothing short of an atomic reaction could achieve

this end. Scienti�c knowledge also guided the development of the Haber-Bosch method of

synthesizing ammonia. During the �rst trial runs, Carl Bosch struggled with the problem

that the hydrogen proved to be corrosive for the high-pressure reactor chamber made of

steel. Using basic chemistry, he deduced that the problem was due to the carbon contained

in the steel walls of the chamber. His solution was to build a double wall reactor chamber

with iron on the inside, which contains no carbon, and steel on the outside (Je�reys, 2008).

In our �nal set of analyses, we explore the relationship between novel combinations of

ideas and proximity to science. The strikingly similar patterns displayed in Figures 1 and 2

suggest that the novelty of patents and their distance-to-science are related. Consistent with

this intuition, we establish as a third fact : patents that are more science-intensive exhibit

a higher patent novelty on average.

In Panels (a) and (b) of Figure 3, we show the novelty distributions for relatively more

science-intensive patents (D=1, D=2, D=3) and for relatively less science-intensive patents

(D=4, D=5, D>5, unconnected). As de�ned above, the lower the likelihood of a pairwise

word combination in a patent is, the more novel the patent. Panel shows the novelty dis-

tribution for the raw data. In Panel (b) of Figure 3, we adjust for di�erences in technology

and year. The novelty distribution for more science-intensive patents has its peak to the left

and at a higher density than the novelty distribution for less science-intensive patents, both
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in the raw data and when controlling for technologies. This con�rms that patents closer

to science contain more novel word combinations; i.e., they are more novel (on average).

Columns 3 and 4 of Table 2 display this relationship in regression form. In the averages

(Column 3) and within technology-year (Column 4), we see that novelty is decreasing with

distance-to-science�i.e., word combinations become more common, on average, as patents

move further away from connections to science.

[Insert Figure 3 Here]

However, we also observe in Panel b) of Figure 3 that the relationship is non-linear

and asymmetric. While patents more proximate to science are less likely to be in the �less

novel� half of the distribution (right tail), they are also less likely to be in the far left tail of

the novelty distribution. This asymmetry suggests that connection to science is associated

with mid-range and above average novelty, while the extreme novel patents are more likely

to be distant from science. Perhaps, those unconnected to science are less constrained in

language (or imagination) than inventions tethered by the norms and formalities of science.

In Appendix B.10, we show that these �ndings are robust to using the emergence of new

words, the average age of words, of patent chemical novelty as alternative novelty indicators.

Finally, we combine our measures of distance-to-science and novelty to assess whether

they contribute separately to patent value. The results are presented in Appendix B.11. We

interact distance-to-science with indicators for below and above median novelty. Speci�cally,

patents are below (above) median novelty if they have new word combinations that are below

(above) median for their CPC (4 digit) class and year. We then generate graphs equivalent

to Figure 1 for the below median and above median novelty groups. The results in Figure

A.8 in Appendix B.11 reveal very similar patterns for both groups. Both with and without

adjusting for tech class × year, we see that relative patent value is increasing in proximity

to science. The same is true regardless of whether we look at % di�erences or average patent

dollar values.
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While the relationship between distance-to-science and relative patent value is quite

similar for both novelty groups, Appendix Figure A.8 in Appendix B.11 shows that patent

values are consistently higher (shifted upward) for the high novelty sub-groups. Thus, novelty

and science both appear to contribute to private value. Since the two characteristics are at

least partially co-determined,21 we cannot quantify their relative in�uence on patent values.

However, since both novelty subgroups have patent values increasing in their proximity to

science, novelty is clearly not the sole mechanism behind our main results. Rather, we

interpret these patterns as evidence that using science as a tool to explore and express new

ideas is a path associated with both greater novelty and value capture.

5 Discussion: Heterogeneity in the Science Premium

Our main results suggest that �rms reap greater bene�ts from more novel and science-driven

invention. So why don't all �rms simply choose to invent �on the shoulders" of science?

In this section we discuss possible explanations as to why the science premium persists

given that �rms choose their preferred mode of R&D. Overall, we �nd that the greater

share of value from inventing with (and without) science is captured by the subset of �rms

that consistently use science in patenting. However, we still �nd a science premium after

accounting for �rm �xed e�ects or scienti�c-intensity�implying that risk aversion and/or

convex marginal costs of inventing with science limit that mode of innovation.

Imperfect information. We �rst acknowledge the possibility that managers might not be

aware of the (average) additional value of science-proximate patenting. Given the narratives

around patenting in the information technology industry (see Section 2.1), we would not be

surprised if executives often underestimate the value of inventing based on recent science.

That said, �rms might be well aware of the average value of relying on science in inventing,

21In addition to the patterns found in Figure 3, Figure A.8 in Appendix B.11 demonstrates the strong
correlation between novelty and proximity to science, as the two panels that adjust for technology × year
�xed e�ects (Panels (b) and (d)) exhibit much larger di�erences between the low vs. high novelty subgroups
than we see in the unadjusted raw di�erences (Panels (a) and (b)).
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yet still choose other strategies for performing R&D.

Risk Aversion. As emphasized in the results sections, the average premium for building

on science also comes with increased tail-risk (i.e., more worthless patents). The additional

expected value of science-proximate patenting might not appeal to �rms that are risk averse

due to a variety of factors (Cyert et al., 1963; Argote and Greve, 2007; Hall and Lerner, 2010;

Eggers, 2012; Krieger et al., 2021).22 Based on our �rm �xed e�ects regressions (Appendix

Figure A.6) and analyses described below, we believe that risk-aversion plays a role, since

the science premium persists within patenting �rms that choose di�erent R&D strategies.

Value cli� in the supply of ideas. Marginal bene�ts to building on the shoulders of sci-

ence may be non-linear and drop o� dramatically beyond a certain level. In this scenario, the

returns to exploring with science �fall o� a cli�" after the initial (obvious) connections from

science to invention are �picked over.� Observed average returns to science-based invention

might appear higher than pure �tinkering� invention, even though marginal projects have

similar ex-ante values. Without a series of natural experiments that exogenously increase

di�erent types of R&D (e.g., D=1, D=2, D=3, etc.), we cannot rule this story out entirely.

However, this story would run counter to much observed behavior around commercializing

science. U.S.-based universities have displayed growing enthusiasm for commercialization

science, as evidenced by their secular increase in patenting and licensing of science-driven

intellectual property,23 and are doing more to encourage commercialization through setting

up their own accelerators and entrepreneurship competitions. Similarly, venture capitalists

have exhibited a renewed interest in companies that aim to commercialize "tough tech,�

which includes areas like energy systems, life sciences, and defense technologies that are

22The prior literature suggests that �rms might vary greatly in their level of risk-aversion. Related, a recent
set of papers has explored how �rms di�er in their level of short-termism (Sampson and Shi, 2020; Gormsen
and Huber, 2022), suggesting that �rms may have di�erent tolerance for uncertain R&D explorations. While
this study does not involve the data required to e�ectively separate �rms by their implied discount rates or
level of risk aversion, we believe that future research may be able to test how changes in these �rm-level
factors shifts the direction of innovative output.

23See the Association of University Technology Managers (AUTM) reports on trends in university patent-
ing, spino� company formation and licensing (e.g., https://autm.net/AUTM/media/SurveyReportsPDF/
FY20-US-Licensing-Survey-FNL.pdf).
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more likely to rely on academic discoveries for their core intellectual property.24

Thus, despite the contracting frictions in commercializing frontier science (e.g., license

negotiations, asymmetric information) and the cost disadvantages relative to developing

information technologies (Ewens et al., 2018), industry trends suggest that both scienti�c

institutions and investors believe that the marginal academic idea is worth the e�ort of

expanding their scope of activity. In short, we do not expect the �value cli�� story to drive

the science premium.

R&D Cost Heterogeneity and Path Dependency. Even though the rewards to science-

proximate innovation are higher on average, the �xed costs of accessing that value might

di�er across �rms. Setting up in-house R&D or gathering the expertise needed to build on

scienti�c insights (absorptive capacity without in-house research) is costly and may not yield

positive net present value for all �rms. Reasons for R&D cost heterogeneity in reliance on

science include (but are not limited to): scarcity of talent with expertise in the scienti�c

literature or methods, access to �nancing, location relative to scienti�c clusters and talent,

as well as path dependencies like �trapped factors� (Bloom et al., 2013), adjustment costs

(Chan et al., 2007; Krieger et al., 2022), imprinting (Levinthal, 2003), and absorptive capacity

(Cohen and Levinthal, 1990).

We investigate this possibility by looking at how the value of science in patenting di�ers

across �rms. Heterogeneity in the costs of using or access to science for invention may lead

�rms to sort into di�erent R&D strategies. As discussed in Section 4, �rm-level sorting based

on overall invention quality/capabilities could show up in the aggregate data as a science

premium. However, we �nd that adding in �rm �xed e�ects, in addition to technology × year

�xed e�ects, does not eradicate the science premium (see Appendix Table A.6 in Appendix

B.3). The magnitude of the science premium (in dollar terms) is smaller due to �rm �xed

e�ects, which implies that �rm di�erences in inventing quality are indeed associated with

24Trends in "tough tech" �nancing are detailed in a report by The Engine, an independent venture
capital �rm seeded by MIT and Harvard University: https://www.engine.xyz/wp-content/themes/

the-engine-wp-theme/templates/pitchbook-assets/The-Engine-Pitchbook.pdf.
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their propensity to use science.

The logical next question is what drives this variation in �rm quality. Di�cult-to-observe

factors like general managerial skill and the extraordinary creativity of individual contrib-

utors might drive persistent �rm di�erences. Other sources of heterogeneity include hard

(though not impossible) to change �rm characteristics like �rm location, investor pressures,

and the existence or timing of competitor breakthroughs. Where patenting �rms have sig-

ni�cantly more agency is in their choice of R&D strategy. A �rm's level of reliance on

science has important (high commitment) implications for how it explores and develops new

technology�i.e., sourcing ideas, modes of experimentation, types of expertise, project se-

lection criteria, novelty, etc. Thus, we expect that a �rm's science intensity would a�ect

the overall bene�ts of patenting, as well as the premium from relying on science in a given

invention.

In order to reasonably characterize �rm di�erences in reliance on science, we limit the

sample to �rms with at least 10 patents. Next, we split the sample by �rms above and

below the median in the percentage of their (cumulative) patents to-date that directly cite

scienti�c articles (D=1).25 Panel (a) of Figure A.9 in Appendix B.12 shows the distribution

of distance-to-science patents for the two groups. The sample split indeed appears to identify

di�erent level of reliance on science on the �rm level: The above median �rms have a larger

share of (D=1) and (D=2) patents than the below median �rms. The below median �rms

have a larger share for (D>3) patents than the above median �rms.

To see whether above and below median �rms di�er in patent values, we then run our

main patent value regression speci�cations with interaction terms for distance-to-science ×

above/below median, accounting for technology class and time �xed e�ects. We plot the

results in Panel (b).

Three �ndings stick out. First, �rms above the median produce higher value patents

25Intuitively, both groups are �rms with a non-trivial inventive footprint, but representing di�erent �modes"
of invention.

26



generally, across every level of distance-to-science (see Panel (b) of Appendix Figure A.9).26

The gap in average patent value is consistently around $4 million. This large value di�erence

suggests that that �rms exploring with the aid of science produce more valuable inventions

generally�including the majority of their inventions that only use science indirectly (D>1).

Though we cannot infer the direction of causality in that relationship, we suspect that �rms

producing highly valuable patents without science would not have a strong incentive to

adopt more science intensive modes of invention.27 Second, we see that the marginal value

of building on science is greater for �rms above the median in their typical reliance on science.

Panel B shows that �rms above the median gain a roughly $2 million of average incremental

value by producing a (D=1) patent instead of a (D=4) patent, while that di�erence is only

about $1.6 million (with a wider con�dence interval, nearly straddling $0) for �rms below

the median. Third, we still see an overall downward slope for both groups�suggesting that

other factors like risk aversion and/or the marginal cost of science-based invention (even for

science-intensive �rms) also contribute to the science premium.

Another dimension of a �rm's �science intensity" is whether the �rm performs in-house re-

search. Engaging directly in science via academic publishing is the most direct path by which

�rms build absorptive capacity for new science (Henderson and Cockburn, 1994; Cockburn

et al., 2000; Stern, 2004). In Table A.10 in Appendix B.12, we investigate how building on

a �rm's own (in-house) publications correlates with patent dollar value. We �rst show that

(D=1) patents that cite at least one in-house publication (with authors linked to the same

�rm) are signi�cantly more valuable than (D=1) patents that only cite external research

(Columns 1 and 2). On average, citing an in-house publication is associated with a patent

value more than 8 times larger than other (D=1) patents. We further show that �rms that

are in the above median group for reliance on science generate higher value from patents that

26We use the terminology "produce higher value patents,� though we cannot distinguish between value
creation and value capture in this sample split. It is possible that above the median �rms either produce
higher quality inventions or are simply better at extracting value from patents.

27Indeed, in supplemental analyses (not shown) we �nd that �rms�both above and below the median in
reliance on science�tend to have a smaller percentage of (D=1) patents as they mature and patent more
over time.
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cite in-house research than �rms that less frequently rely on science (Columns 3�5). Thus,

building on in-house science appears highly valuable, especially for high reliance-on-science

�rms.

In summary, less science-intensive �rms tend to have lower value patents, and appear

to gain a smaller bene�t (if any at all) from building on science�both for external and

in-house science. Patenting �rms without many prior science-based inventions may be fully

informed about the (average) bene�ts of building on science, yet regard the path to develop-

ing absorptive capacity as too long, expensive and risky. While science-based inventing may

seem attractive in the context of patent value, the long-term investments required to consis-

tently build on science are considerable in many industries. Furthermore, the persistence of

a science premium suggests that risk aversion and/or convex marginal cost in using science

directs �rms to lower payo� modes of invention.

6 Conclusion

Our study shows that building more directly on science is associated with more novel in-

ventions and capturing greater private value from those inventions. Thus, while scientists

since Isaac Newton have been known to see further �by standing on the shoulders of giants,�

our study suggests that many inventors in the private sector see further by standing on the

shoulders of science.

By their very nature, our estimates provide an incomplete picture of the private value

derived from science. Beyond patented inventions, R&D organizations bene�t from applying

the tools and training originating in the scienti�c community. These indirect bene�ts are

possible because �rms hire scientists and engage with the research frontier (Cohen and

Levinthal, 1990; Henderson and Cockburn, 1994; Stern, 2004).

Along with the increased expected rewards from science, our results show that building

on science is a relatively risky approach to corporate innovation. We �nd that patents closer
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to science and relatively novel patents are both more likely to end up in the tails of the

patent value distribution.

In combination, our results suggest that science helps �rms push the technological frontier

by building on more disparate ideas to introduce and combine more novel technologies�

many of which fall �at commercially, while others propel their �rm's growth. While its value

is seemingly available for science-driven �rms to capture, science's potential in corporate

innovation remains an important area for study. How best to access, engage with and build

upon the ever-expanding base of scienti�c knowledge and methods is an exciting challenge

for both R&D managers and scholars.
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Figure 1: Distance-to-science, patent value and risk.

Panel (a) shows the average increase in patent value for all distances to science relative to patents with
a distance of four (D=4) in percent (%). The values of U.S. patents are from Kogan et al. (2017). The
distance-to-science of U.S. patents is calculated using data from Marx and Fuegi (2020) and the method of
Ahmadpoor and Jones (2017). The distance-to-science is de�ned by citation links. The values correspond to
the coe�cients in Table 1, Column 1. Panel (b) shows the distribution of patent values across the percentiles
of the value distribution of all patents for more science-intensive patents (D=1, D=2 or D=3; solid red line)
and less science-intensive patents (D>3 or unconnected; dashed blue line). The horizontal line at 1% shows
the distribution of all patents across the percentiles of the value distribution. In Panel (c), we residualize
the patent value by the average value of a patent with the same (four-digit) CPC technology class and �ling
year and a distance of four, then display relative (%) values indexed to D=4. The values correspond to the
coe�cients in Table 1, Column 2. In Panel (d), we show the distribution of the patent values normalized by
technology and year.
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Figure 2: Patent novelty, patent value and risk.

Panel (a) shows the average patent value for every likelihood of pairwise combinations of words that occur
in a particular patent as an indicator for patent novelty. Smaller probabilities are interpreted as higher
novelty. The winsorized values are marked with �X.� The size of the bubbles represents the number of
patents underlying each point. Panel (b) shows the distribution of patent values across the percentiles of
the value distribution of all patents for patents with below average pairwise word combination probability
(solid red line) and for above average pairwise word combination probability (dashed blue line). In Panel
(c), we plot the average residualized patent value by residualized pairwise word combination probability. We
residualize the value and the word combination probability for the interaction of (four-digit) CPC technology
class and �ling year. Panel (d) shows the distribution of residualized patent values by distance of patents to
science across the percentiles of the value distribution of all patents for patents with below average pairwise
word combination probability in a technology and year (solid red line) and for above average pairwise word
combination probability in a technology and year (dashed blue line).
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Figure 3: Patent novelty and distance-to-science.

Panel (a) shows the kernel density plot of the average likelihood of pairwise combinations of words that
occur in a particular patent for more science-intensive patents (D=1, D=2 or D=3; red line) and for less
science-intensive patents (D>3 or unconnected; dashed blue line). Smaller probabilities are interpreted as a
higher novelty. In Panel (b), we residualize the patent value and the likelihood of word combinations by the
average value of a patent with the same technology class and �ling year and a distance of four.
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(1) (2) (3) (4) (5) (6)

Patent Value

Outcome: Dollar Dollar Citations Patent Scope Prob(Litigation) x 1000
Percent Percent Percent

Distance 1 0.82 0.26 0.99 0.12 10.36 4.40
(0.17) (0.04) (0.09) (0.03) (1.44) (0.62)

Distance 2 0.44 0.18 0.36 0.10 6.77 1.50
(0.11) (0.03) (0.04) (0.02) (0.60) (0.42)

Distance 3 0.14 0.07 0.09 0.07 4.93 0.16
(0.05) (0.02) (0.02) (0.01) (0.38) (0.34)

Distance 4 4.39
(0.41)

Distance 5 -0.06 -0.01 -0.06 -0.03 3.88 -0.52
(0.03) (0.01) (0.01) (0.02) (0.40) (0.43)

Distance >5 -0.16 -0.03 -0.14 -0.05 3.43 -0.73
(0.04) (0.02) (0.02) (0.02) (0.30) (0.40)

Unconnected -0.13 -0.01 -0.13 -0.04 2.49 -0.57
(0.07) (0.02) (0.03) (0.08) (0.26) (0.41)

Tech x Year FE No Yes Yes Yes Yes
Mean Dep. 11.56 11.56 29.88 0.12 6.40 6.40
Obs. 1135757 1135757 1135757 231474 1135757 1135757

Table 1: Patent Value Measures
Table 1 reports regression results on how various patent value outcomes with the independent variable
of distance-to-science. The calculation of distance-to-science is based on Ahmadpoor and Jones (2017).
Unconnected patents are patents for which we could not �nd a citation link to any scienti�c article. Columns
1�3 are generated by ordinary least squares (OLS) speci�cations, and we report the coe�cients in terms of
their percentage increases relative to D=4. For example, the coe�cient for the �rst value in Column 1
may be interpreted as an 82% increase relative to (D=4). In Column 1, the outcome is (adjusted) patent
values from Kogan et al. (2017). In Column 2, we control for (four-digit) CPC technology class × �ling year
�xed e�ects such that coe�cients represent relative di�erences within tech-year. In Column 3, the outcome
variable is the count of citing families. In Column 4, we use the within art unit patent scope index provided
by Kuhn and Thompson (2017) as the outcome variable in an OLS regression. Columns 5 and 6 are both
OLS speci�cations where the outcome variable is an indicator variable for whether or not the focal patent
was ever involved in litigation (multiplied by 1000). The litigation outcome variable is based on the data
from Marco et al. (2017). For all models, the standard errors are clustered on the CPC technology class
level.
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(1) (2) (3) (4)

Patent value Patent novelty

Outcome: Dollar Dollar Probability of Probability of
word combination word combination

Distance 1 7.91 -1.69
(0.36) (0.18)

Distance 2 9.37 -0.76
(0.28) (0.11)

Distance 3 10.45 -0.23
(0.17) (0.07)

Distance 4 11.90
(0.16)

Distance 5 13.95 0.30
(0.18) (0.07)

Distance >5 16.58 0.79
(0.20) (0.13)

Unconnected 16.25 0.39
(0.50) (0.11)

Probability -43.39 -10.20
of word combinations (3.84) (1.47)
Tech x Year FE No Yes No Yes
Mean Dep. 11.56 11.56 10.45 10.45
Obs. 1135669 1135669 1135669 1135669

Table 2: Patent value and text novelty
This table shows OLS regression results on the relation of patent value, patent novelty and distance-to-
science. In Columns 1 and 2, the outcome variable is the adjusted Kogan et al. (2017) patent values.The
independent variable is the focal patent's probability of word combinations based on the data from Arts
et al. (2018). In Columns 3 and 4, the outcome variable is the patent's probability of word combinations,
and the indepenent variables are the distance-to-science measure based on Ahmadpoor and Jones (2017).
Unconnected patents are patents for which we could not �nd a citation link to any scienti�c article. In
Columns 2, 3, 4 we additionally control for �ling year × (four-digit) CPC technology class �xed e�ects. The
standard errors are clustered on the CPC technology class level.
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A Data

A.1 Data Sources

For our analysis, we calculate distance-to-science for each patent following the method of

Ahmadpoor and Jones (2017). We then match this data with patent values calculated by

Kogan et al. (2017) and with patent characteristics from a variety of sources. We use all

patents that have a non-missing patent value and in whose technology class and �ling year

there is at least one patent with a distance-to-science of four.

Distance=1

D=2

D=2

D=3

Papers Patents

Figure A.1: Distance-to-science

This �gure is adapted from (Ahmadpoor and Jones, 2017). It shows the distance to science for patents
based on citation proximity to scienti�c articles.

Distance-to-science: Ahmadpoor and Jones (2017) de�ne a patent's distance to science

using citation links.28 A patent that directly cites a scienti�c paper has a distance to science

of one (D=1). Patents cite academic articles or other patents to give credit to prior art on

which the technology disclosed in the patent is based. Patent-to-article citations are used

in many recent papers to capture the link between science and innovation, e.g. Arora et al.

(2020) and (Azoulay et al., 2019).29 A patent that cites a (D=1)-patent but no scienti�c

article has a distance of two (D=2), and so on (Figure A.1). Citing another patent that is

28We thank Mohammad Ahmadpoor and Ben Jones for sharing their data.
29Roach and Cohen (Roach and Cohen, 2013) suggest that patent-to-article citations re�ect knowledge

�ows from academia to the private sector better than the commonly used patent-to-patent citation.
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based on a scienti�c article provides evidence that the citing patent is also based to some

degree on science, but less directly so.

To determine the distance-to-science of individual patents we use data from Marx and

Fuegi Marx and Fuegi (2020), which provides a link from academic articles in Microsoft

Academic to patents. Then we use data in PATSTAT to obtain patent-to-patent citations.

We cross-check the values of our distance-to-science measure based on Marx and Fuegi (2020)

with the values calculated by Ahmadpoor and Jones (2017). In cases where Ahmadpoor and

Jones (2017) arrive at a smaller distance-to-science, we substitute their values.

Sources:

https: // www. openicpsr. org/ openicpsr/ project/ 108362/ version/ V12/ view

https: // www. microsoft. com/ en-us/ research/ project/ academic/

https: // www. epo. org/ searching-for-patents/ business/ patstat. html\

#tab-1

Patent value: We match the distance-to-science information with the data on patent

values of Kogan et al. (2017). Kogan et al. (2017) use abnormal stock market returns around

the publication date of the patent to infer the value of a patent. Therefore, the data measures

the ex-ante expected net present value of the patent for the �ling company. This dataset

contains patent values for 1.8 million U.S. patents �led between 1926 and 2009.

Source: https: // iu. app. box. com/ v/ patents

Patent novelty: For our novelty measure, we use information on words in patents from

Arts et al. (2018). Arts et al. (2018) tokenize the titles and abstract texts of patents, clean

and alphabetically sort the resulting words. The resulting word vector contains on average

37 words per patent and in sum 526,561 words. For the novelty measure, we count how often

a particular pairwise word combination occurs in a patent abstract and standardize it with
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the total number of pairwise word combinations up to this year. We also calculate for each

word how common it is. To do this, we count for each word how often it was used in the

past and standardize it with the total number of words used.

Source: https: // dataverse. harvard. edu/ dataverse/ patenttext

As an alternative measure of patent novelty, we take the subset of patents which describe

chemical compounds and calculate their compound novelty. For any given patent, we calcu-

late the pairwise similarity between each one of its described chemical structures' similarity

to all compounds represented in prior patents in the same 3-digit CPC class. One minus

the maximum of those pairwise similiarities is a patent's �chemical patent novelty score.�

To do so, we use the crosswalk of patents-to-compounds from SureChEMBL, which extracts

the standardized (SMILES code) chemical structures represented in patents. To calculate

the pairwise similarity scores, we use the ChemmineR package (Backman et al., 2011). We

describe these analyses in Appendix B.10.

Sources:

http: // chembl. blogspot. com/ 2015/ 03/ the-surechembl-map-file-is-out.

html

https: // chemminetools. ucr. edu/

https: // www. bioconductor. org/ packages/ devel/ bioc/ vignettes/ ChemmineR/

inst/ doc/ ChemmineR. html

Other patent characteristics:

� Text similarity: We calculate the pairwise text similarity between a patent and

the articles cited in the patent. Then we take the maximum over all the similarities

of a patent to its cited articles to determine the distance to the closest article. To

calculate the similarity between the abstracts of the article and of the patent we use
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the �term frequency-inverse document frequency� (tf-idf) method. We use the �gensim�

implementation in Python for our calculations (https://radimrehurek.com/ gensim/).

Article abstracts are from the OpenAcademic Graph (Tang et al., 2008; Sinha et al.,

2015) and patent abstracts are from Patstat. For each term used in the abstracts of

the patent and the article, tf-idf measures how often this word appears in the abstract

and then standardizes this value with the probability that this term appears in general.

Using the tf-idf value for each term, we can build a word vector for each of the abstracts.

Then we determine the similarity between the abstracts of the patent and the article

abstract by calculating the correlation between the two-word vectors. If a patent cites

several articles, we take the maximum in similarity.

Source: https: // www. openacademic. ai/ oag/ 1

� Patent scope is from Kuhn and Thompson (Kuhn and Thompson, 2017). Speci�cally,

we use the z-score within art unit for our results.

Source: http: // jeffreymkuhn. com/ index. php/ data/

� Patent Litigation is from the USPTO's Patent Litigation Docket Reports Data

(Marco et al., 2017).

Source: https: // www. uspto. gov/ learning-and-resources/ electronic-data-products/

patent-litigation-docket-reports-data

� All other patent characteristics are from Patstat�including application dates and

(four digit patent classes.

Source: https: // www. epo. org/ searching-for-patents/ business/ patstat.

html
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A.2 Patent Characteristics and Distance-to-Science

The following tables describe characteristics of patents in our data set. All the variables

relate to characteristics at the time of patent issuance, rather than subsequent outcomes like

stock market reaction, forward citations, and litigation.

20.7% of patents in our data directly cite scienti�c publications. Among those (D=1)

patents, they average 6.1 citations to scienti�c journal articles, and the average age of those

journal articles is 8.04 years prior to the patent's publication. Appendix Tables A.1, A.2 and

A.3 present descriptive statistics for patents in our sample, by distance-to-science. We �nd

that more recent patents are more likely to cite science. In our analysis data, the average

patent issuance year of 2001.8 for (D=1) patents, and steadily descends with distance-to-

science all the way to 1989.2 for unconnected patents. Patents closer to science also tend to

have larger teams, more patents in their patent �family,�30 take longer for the patent o�ce to

process (from application to publication), and have fewer words in their claims. Appendix

Table A.3 shows that these relationships hold even after controlling for patent publication

year and CPC (four digit) technology class.

Appendix Table A.2 and Appendix Table A.3 further describe the pro�le of backward

citations, by the focal patent's distance-to-science. We see that patents closer to science have

more backwards citations�indicating that proximity to science involves building o� a larger

base of prior art. We �nd that science patents also build o� a wider foundation of extant

inventions, as the share of same-technology (CPC class) citations is increasing in distance-

to-science. Patents that are most distant to science also cite older prior art. The average

age of a cited patent is between 7.38�8.33 years old for (D=1,2,3) patents, while the range

grows to 10.9�22.0 year old for (D>3). Finally, we use the patent-to-patent text similarity

measure developed by Kuhn and Thompson (2017) to assess how distance-to-science corre-

lates with similarity between focal patents and their (backwards) cited patents. In both the

30A patent family is the set of patents, applied for across di�erent countries, that aim to protect the same
invention by the same inventor(s).
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raw averages and the year- and technology-adjusted regressions, we see that the maximum

cited patent similarity is decreasing in distance from science while the average cited patent

similarity is increasing in distance-to-science. In other words, inventions closer to science

cite patents that are more varied in their word similarity to the focal patent. These patterns

�t the view that science, as an exploration tool, helps navigate broader patent space. The

common language of shared scienti�c methods enables speci�c comparisons (i.e., clear perfor-

mance improvements) to highly similar innovations, while also uncovering new connections

and sparking recombination across inventions with disparate product applications.

Additional Examples: U.S. Patent number 6120536 (�Medical devices with long term

non-thrombogenic coatings�) was published in July 2000 and assigned to Schneider USA

Inc. (later purchased by Boston Scienti�c). It describes a drug-eluting coating applied to

a metallic stent in order to prevent blood clots.31 The patent builds directly on science

(D=1), with 8 citations to scienti�c publications and 35 additional non-patent citations

(mostly conference presentations and technical reports). These publications include articles

from The Journal of Biomedical Materials Research, The Society of Thoracic Surgeons and

the American Society for Arti�cial Internal Organs. One of the two inventors, Michael

Helmus, is an author of four of those non-patent citations, two of which are his own grant

applications. The patent's word similarity to its average cited publication and most similar

scienti�c publication are both in the in the top quartile of patents within the CPC technology

class (A61L)�meaning that the language employed in the patent is highly similar to its most

proximate scienti�c articles. The application itself is rich in data, presenting eight di�erent

�gures plotting drug release over time, using di�erent coating conditions and concentrations.

Just as the science-based McKesson restocking system patent shared the same technology

class as the scienti�cally distant Coca Cola vending machine patent (see Section 2 in the

main text of the paper), the drug-eluting stent patent above (6120536) shares the same CPC

class as many patents that are mostly or totally disconnected from science (D>5). These

31As of May 2021, the patent had 566 forward citations.
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include materials that prevent oxidation of medical implants (5543471, D=6), a �lm that

shrinks upon contact with excess water (patent number 5641562, D=5), and air �lters which

contain tea extracts that might deactivate viruses (5747053, D=5). Clearly, all of the above

inventions bene�t indirectly from the scienti�c advances of the modern era from physics,

chemistry and microbiology. However, as applied engineering e�orts, their search process

and method for communicating the invention's distinctive features and value is di�erent

since they do not relate their work to formal scienti�c �ndings.
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Nb. Family Nb. Days Claim Claim
Patents Year Size Inventors Processed Words App. Words Filed

Distance 1 234946 2001.8 6.23 2.89 1100.2 110.6 166.3
Distance 2 386061 2001.9 4.13 2.64 1040.9 113.4 164.3
Distance 3 240145 2000.9 3.93 2.54 923.2 122.8 167.1
Distance 4 105705 1997.4 3.77 2.40 795.8 137.6 175.5
Distance 5 60579 1994.0 3.54 2.23 728.4 141.4 181.6
Distance >5 67355 1991.5 3.39 2.07 686.5 146.0 181.8
Unconbected 40966 1989.2 3.51 2.05 701.5 144.0 171.1
Total 1135757 1999.7 4.39 2.57 955.5 118.9 167.2

Table A.1: Patent Characteristics, by Distance-to-Science

Notes: Table A.1 presents patent characteristics for patents in the analysis sample, by degree of distance

from science.

Nb. Share Share StdDev. Max. Avg.
Cites Self-Cites Same-Tech Age Age Sim. Cited Sim. Cited

Distance 1 13.3 0.14 0.54 8.00 5.27 0.55 0.31
Distance 2 11.8 0.14 0.56 7.38 5.18 0.54 0.32
Distance 3 9.77 0.17 0.56 8.33 6.10 0.52 0.34
Distance 4 9.93 0.18 0.56 10.9 8.11 0.52 0.35
Distance 5 10.7 0.16 0.57 12.9 9.44 0.50 0.35
Distance >5 10.2 0.14 0.60 15.0 10.9 0.48 0.36
Unconnected 8.58 0.13 0.59 22.0 12.7 0.44 0.37
Total 11.2 0.15 0.56 9.18 6.38 0.53 0.33

Table A.2: Backward Citations, by Distance-to-Science

Table A.2 describes backwards citation characteristics for patents in the analysis sample, by degree of distance

from science.
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(1) (2) (3) (4) (5) (6) (7) (8)
Nb. Processing Claim Nb. Backwards Share Avg. Age Max. Avg.

Outcome: Inventors Days Words Cites Same-Tech Cites Sim. Cited Sim. Cited

Distance 1 0.329 101.1 -13.54 6.47 -0.055 -0.59 0.054 -0.037
(0.00706) (10.32) (0.878) (0.085) (0.0013) (0.024) (0.00078) (0.00055)

Distance 2 0.184 58.03 -12.82 3.43 -0.042 -1.22 0.037 -0.025
(0.00647) (9.445) (0.800) (0.078) (0.0012) (0.022) (0.00071) (0.00050)

Distance 3 0.0796 -4.608 -9.634 1.62 -0.024 -1.12 0.0076 -0.010
(0.00657) (9.598) (0.787) (0.079) (0.0012) (0.022) (0.00072) (0.00051)

Distance 5 -0.0220 10.47 5.677 -1.51 0.014 1.38 -0.011 1.8e-06
(0.00890) (13.00) (1.343) (0.11) (0.0016) (0.030) (0.00097) (0.00069)

Distance >5 -0.0494 16.15 6.206 -3.74 0.050 2.87 -0.023 0.0099
(0.00887) (12.96) (1.746) (0.11) (0.0016) (0.030) (0.00097) (0.00069)

Unconnected -0.0617 33.51 1.343 -4.17 0.055 9.82 -0.052 0.020
(0.0106) (15.47) (2.352) (0.13) (0.0022) (0.040) (0.0014) (0.00097)

Tech x Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 1,135,747 1,135,725 232,049 1,135,747 1,114,025 1,114,025 1,108,568 1,108,568

Table A.3: Patent Characteristics and Backwards Citations, by Distance-to-Science (Regres-
sions)

Table A.3 presents OLS regression results of distance-to-science on a a variety of patent characteristics. In

each regression, the omitted group is patents where degree is equal to four (D=4). The outcome variable in

Column 1 is the number of inventors listed on the patent. In Column 2, the dependent variable is number

of days between a patent's �rst application and issuance. Columns 3 show results for number of words in

patents' �rst claim in the issued patent. Column 4's outcome is the total number of backwards citations to

other patents. Column 5 uses the share of each patent's backward citations that go to same (4-digit) CPC

technology class as the focal patent. Column 6 reports results for the average age of backwards citations.

Column 7 and 8's outcomes are the maximum and average similarity of the focal patent's text to the text

of it's cited patents. All models include patent issuance year and technology class (4-digit CPC code) �xed

e�ects.
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B Additional Regressions and Robustness Results

B.1 Patent Value Outcomes (in Levels), by Distance-to-Science and

Text Similarity

Columns 1�3 of Appendix Table A.4 are analogous to those Table 1, but with coe�cients

that correspond to level di�erences rather than percentage di�erences. This table generates

the patent value magnitudes that we report in Section 4.1. We report the same estimates as

Table 1 for Columns 4�6, which show the patent scope and litigation outcomes as alternative

measures of value. Appendix Table A.4 also has two additional Columns (7 and 8) which

report the text similarity between the focal patent and it's most similar scienti�c journal

articles as described above in Appendix A.1 and B.5.
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(1) (2) (3) (4) (5) (6) (7) (8)

Patent Value Text similarity

Outcome: Dollar Dollar Cita- Patent Probability of Text Dollar
tions Scope Litigation x 1000 sim.

Distance 1 15.82 2.64 22.17 0.12 10.36 4.40 7.13
(1.56) (0.36) (1.47) (0.03) (1.44) (0.62) (0.31)

Distance 2 12.49 1.88 8.07 0.10 6.77 1.50 4.76
(1.08) (0.31) (0.63) (0.02) (0.60) (0.41) (0.26)

Distance 3 9.90 0.69 2.02 0.07 4.93 0.16 2.46
(0.77) (0.19) (0.38) (0.01) (0.38) (0.34) (0.20)

Distance 4 8.69 4.39
(0.62) (0.41)

Distance 5 8.21 -0.13 -1.41 -0.03 3.88 -0.52 0.10
(0.46) (0.15) (0.27) (0.02) (0.40) (0.43) (0.09)

Distance >5 7.27 -0.33 -3.10 -0.05 3.43 -0.73 -0.46
(0.33) (0.18) (0.36) (0.02) (0.30) (0.40) (0.09)

Unconnected 7.55 -0.06 -2.94 -0.04 2.49 -0.57
(0.64) (0.22) (0.69) (0.08) (0.26) (0.41)

Text similarity 3.04
(0.87)

Tech x Year FE No Yes Yes Yes No Yes
Mean Dep. 11.56 11.56 29.88 0.12 6.40 6.40 9.94 11.56
Obs. 1135757 1134139 1134139 231474 1135757 1134139 1134626 1134626

Table A.4: Patent value (in levels) and text similarity, by distance-to-science

This table shows OLS regression results. In Column 1, we use the patent values of Kogan et al. (Kogan et al.,
2017) as outcome variable. The independent variable is the distance-to-science measured by citation links.
The calculation of distance-to-science is based on the method of Ahmadpoor and Jones (Ahmadpoor and
Jones, 2017). Unconnected patents are patents for which we could not �nd a citation link to any scienti�c
article. In Column 2, we control for �ling year x (four-digit) CPC technology class �xed e�ects. We use
the distance-to-science of four as a baseline. In Column 3, we use the number of citing patent families as
outcome variable. This data is from Patstat. In Column 4, we use the within art unit patent scope index
provided by Kuhn and Thompson (2017) as the outcome variable in an OLS regression. Columns 5 and 6
are both OLS speci�cations where the outcome variable is an indicator variable for whether or not the focal
patent was ever involved in litigation (multiplied by 1000). The litigation outcome variable is based on the
data from Marco et al. (2017). In Column 7, we use the text similarity between the abstract of the scienti�c
article cited and the patent abstract as outcome variable. If there is more than one cited article, we take
the maximum of the similarity per patent. In Column 8, we use text similarity as independent variable and
KPSS dollar value as the outcome. The standard errors are clustered on the CPC technology class level.
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B.2 Di�erent assumptions for KPSS value estimates

This section shows the sensitivity of our patent value measures to di�erent assumptions

about probability of patent grant. Our primary measure of patents' private value is from

Kogan et al. (2017) [KPSS]. While we primarily use the KPSS values as a measure of relative

value across distance from science and novelty groups (e.g., see Figure 1 and Table 1), we

also report dollar magnitudes adjusted for conservative estimates of patent grant rates (see

Section 4.1). An important assumption in the KPSS patent valuation method is choosing

the value for a patent's ex-ante probability of success, π. Using a higher probability of patent

success mechanically increases all patent values since the method scales all patent values by

(1− π)−1. The intuition is that a big positive stock market response is even more indicative

of a valuable patent is the market was already expecting that the patent had a decent chance

of approval.

Appendix Table A.5 shows how various adjustments to the KPSS values change the dollar

magnitudes of average patent values by distance-to-science. Columns 1 and 2 of Appendix

Table A.5 report the average patent values, by distance-to-science, based on the adjusted

values used throughout the main body of the paper, without and with technology × year

�xed e�ects. As described in Section 4.1, these �new baseline� estimates de�ate all KPSS

values by 12% to match the most conservative end of the spectrum for probability of patent

grant. In other words, conditional on the market being aware of a patent application, we

assume the greatest average market �surprise� for patent publication events. For contrast,

Columns 4 and 5 show the same regressiosn using the undadjusted (�old baseline�) KPSS

values.

Columns 5 and 6 use a more extreme adjustment: assuming that the market had no

information about a patent application prior to patent publication. This alternative shows

a 40%-50% drop in average patent values with this approach [Column (1) vs. Column (5)],

but the general relationship between distance from science and relative value holds. We

think this additional analysis is useful for o�ering a sort of lower-bound, however reality
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probably falls in between the �no information benchmark� and the original KPSS patent

values. Prior to the American Inventor's Protection Act (AIPA), which was enacted in

November 2002, patent applications were not necessarily publicly available prior to grants.

Nor was the market totally ignorant of �rms' inventions, since �rms might still publicly

disclose inventions that were �patent pending� through a variety of communication channels,

or have publicly disclosed patent documents at non-US patent agencies. Thus, the �no

information benchmark� values serve as an extreme lower bound.

(1) (2) (3) (4) (5) (6)

New baseline Old baseline
Conservative Original KPSS No information

acceptance rate benchmark

Outcome: Dollar Dollar Dollar Dollar Dollar Dollar

Distance 1 15.82 2.64 17.72 2.95 9.73 1.90
(1.56) (0.36) (1.75) (0.40) (0.97) (0.21)

Distance 2 12.49 1.88 13.98 2.10 7.47 1.31
(1.08) (0.31) (1.21) (0.35) (0.68) (0.18)

Distance 3 9.90 0.69 11.09 0.77 5.78 0.48
(0.77) (0.19) (0.87) (0.21) (0.47) (0.11)

Distance 4 8.69 9.74 4.67
(0.62) (0.70) (0.33)

Distance 5 8.21 -0.13 9.20 -0.15 4.25 -0.04
(0.46) (0.15) (0.51) (0.17) (0.24) (0.08)

Distance >5 7.27 -0.33 8.15 -0.37 3.69 -0.12
(0.33) (0.18) (0.37) (0.20) (0.17) (0.09)

Unconnected 7.55 -0.06 8.45 -0.07 3.85 0.04
(0.64) (0.22) (0.71) (0.24) (0.34) (0.12)

Tech x Year FE No Yes No Yes No Yes
Mean Dep. 11.56 11.56 12.95 12.95 6.79 6.79
Obs. 1135757 1134139 1135757 1134139 1135757 1134139

Table A.5: Di�erent assumptions for KPSS calculation
This table shows the results from OLS regressions of distance from science on Kogan et al. (2017) patent
value estimates. In Columns 1 and 2, we use the same adjusted KPSS values used in the main body of the
paper (de�ated 12%). Columns 3 and 4 used the original unadjusted KPSS patent value estimates. Columns
5 and 6 use the extreme �no information benchmark� which assumes the stock market had no knowledge of
a patent application prior to the patent's ultimate publication. In Columns 2, 4 and 6 we add technology
class × �ling year �xed e�ects. The standard errors are clustered on the CPC technology class level.
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B.3 Firm �xed e�ects

Another concern might be that by comparing patents with a di�erent distance-to-science

we are comparing di�erent company types. Some companies might be closer to science and

at the same time produce more valuable patents. To see if our results are driven by �rm-

speci�c factors, we control in the below analyses for �rm �xed e�ects. We base the �rm �xed

e�ect on the �rm identi�er provided by the DISCERN database, which matches patents to

Compustat �rms (Arora et al., 2021b). If a �rm identi�er is missing we use the assignee

identi�er from PATSTAT that is based on the disambiguated assignee name.32

Controlling for �rm �xed e�ects is di�cult to do with Kogan et al. (2017) data. The

reason is that all patents published by the same �rm on the same date have the same value

because their evaluation is based on the same abnormal stock market returns. If we calculate

the �rm �xed e�ects using dummies for each �rm in an OLS regression, dates with multiple

patents then receive disproportional weight in the estimate of the �rm �xed e�ects without

adding new information. We address this problems in two ways which we describe in turn.

Calculating �rm �xed e�ects using a weighted regression. As �rst approach, we

use a weighted regression with the number of patents per �rm and issue date as weights to

calculate the �xed e�ects. Then we use KPSS values net of �xed e�ects as the outcome for

our main regression speci�cation (which is unweighted).

Table A.6 shows our patent value results with �rm �xed e�ects. Column (3) corresponds

to our main results (in percentage terms), but with �rm �xed e�ects in addition to the 4-digit

CPC × year �xed e�ects. The percentage results with �rm �xed e�ects are very similar to

our baseline results, which we reproduce in Column (1). In column (4) we use the KPSS

levels as outcomes and control for �rm �xed e�ects. Here, the science premium is smaller:

$0.64 million for (D=1) patents relative to (D=4) patents, compared to a premium of $2.64

million without �rm �xed e�ects in our baseline regression (Column 2). These results suggest

32As KPSS values are only available for �rms and we are interested in the �rm at the time of patent
assignment, assignees might be a reasonable approximation of �rm identi�er
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that part of the science premium is driven by �rm speci�c characteristics, i.e. that �rms that

create more value select into invention more proximate to science. However, even within-�rm

comparisons of patent value still point to a substantial science premium that is decreasing

in distance-to-science.

Only use the �rst patent per �rm and issue date. To address the multiple patents

problem, a second approach is to include only one patent per �rm and issue date. This sample

restriction also ensures that each issue date receives the same weight in the calculation of the

�rm �xed e�ect. In column (5) and (6) of Table A.6, we show the results including only the

��rst� patent per �rm and issue date, the patent with the lowest publication number per �rm

and issue date, in the sample. The results in percentage terms are smaller in magnitude, but

show the same overall pattern as columns (1) and (3). In levels the results are larger, with

premiums in between the baseline speci�cation (column 2) and the full sample with �rm

�xed e�ects (column 4). In column (7), we use forward citations as outcome and estimate

�rm �xed e�ects directly in the main regression. The results yield the same pattern as our

main results. In column (8) we use the probability that a patent is involved in litigation as

the outcome and �nd that patents that are more proximate to science are more likely to be

involved in patent litigation, also controlling for �rm �xed e�ects.

Reconciling our results with Arora et al. (2021a)

The concurrent Arora et al. (2021a) paper analyzes a similar setup as we do and also includes

�rm �xed e�ects in their regression. They �nd only a small science premium within �rms

of around 1% for patents citing scienti�c articles, as opposed to patents that do not cite

scienti�c articles. This premium is signi�cantly smaller than the science premium of about

25% that we �nd in our �rm �xed results in B.3. In Table A.7. In this section, we aim to

reconcile our �ndings with theirs.
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(1) (2) (3) (4) (5) (6) (7) (8)

Baseline With �rm �xed e�ects

Cita-
Dollar Dollar Dollar tions Prob(Litigation)

% Level % Level % Level % x 1000

Distance 1 0.26 2.64 0.25 0.64 0.09 1.26 0.69 2.77
(0.04) (0.36) (0.08) (0.18) (0.03) (0.37) (0.06) (0.41)

Distance 2 0.18 1.88 0.19 0.48 0.06 0.86 0.25 0.87
(0.03) (0.31) (0.06) (0.15) (0.02) (0.27) (0.02) (0.35)

Distance 3 0.07 0.69 0.06 0.16 0.02 0.34 0.07 0.02
(0.02) (0.19) (0.05) (0.12) (0.01) (0.19) (0.01) (0.30)

Distance 4

Distance 5 -0.01 -0.13 -0.00 -0.01 -0.01 -0.08 -0.05 -0.53
(0.01) (0.15) (0.05) (0.12) (0.01) (0.22) (0.01) (0.40)

Distance >5 -0.03 -0.33 0.03 0.09 0.02 0.28 -0.11 -0.62
(0.02) (0.18) (0.05) (0.12) (0.02) (0.24) (0.01) (0.37)

Unconnected -0.01 -0.06 0.08 0.20 0.02 0.30 -0.11 -0.57
(0.02) (0.21) (0.06) (0.15) (0.02) (0.25) (0.02) (0.36)

Firm FE: No No Yes Yes First First Yes Yes
Tech x Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Mean Dep. 11.56 11.56 11.56 11.56 15.10 15.10 29.88 6.39
Obs. 1136496 1136496 1132296 1132296 370230 370230 1132278 1132278

Table A.6: Firm �xed e�ects
This table reports regression results using various patent value as outcomes and distance-to-science as in-
dependent variable. In Columns 1 and 2 we repeat our baselines results in percent terms and levels with
(4-digit) CPC × �ling year �xed e�ects but without �rm �xed e�ects. In Columns 3 and 4, we add �rm
�xed e�ects to our baseline speci�cation. Columns 5 and 6 repeat the speci�cations of column 3 and 4 but
we only use the patent with the lowest publication number ("First") per �rm and issue date. In Column 7
we use forward citations as outcomes. Columns 8 is an OLS speci�cations where the outcome variable is an
indicator variable for whether or not the focal patent was ever involved in litigation (multiplied by 1000).
For all models, the standard errors are clustered on the CPC technology class level.
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In column 1 of Table A.7, we repeat our results with �rm �xed e�ects from column (3)

in Table A.6, which shows that a D=1 patents is 25% more valuable relative to a patent in

the same class and �ling year with a distance of 4. The �rst main di�erence of our empirical

setup to the setup of Arora et al. (2021a) is that they compare patents with citation to

science to patents without. Thus, they compare D=1 to all other patents and not to D=4

patents. In column 2, we mimic their approach and �nd a science premium of 11%. This

is plausible as many companies have at the same time D=1 and D=2 patents that have a

higher value than D=4 patents. In the following, we use 11% as a benchmark to compare

the results of Arora et al. (2021a) with ours.

The second main di�erence is the sample. We use the full sample of Kogan et al. (2017),

while Arora et al. (2021a) use only companies those headquarters is in the US. We believe

that their data is either equivalent or closely related to the DISCERN database compiled

and published by a subset of the authors Arora et al. (2017). If we restrict our sample to

patents covered in DISCERN, we �nd in column 3 an imprecisely estimated science premium

of zero (95% CI [-10.2%, 10.1%]). While the headline number of Arora et al. (2021a) is 1%,

this number also drops close to 0% with many controls.

The key di�erence between the DISCERN sample and the latter is that the full sample

also includes companies whose headquarters are outside the US, but which are still listed on

the US stock market. Figure A.2 shows the KPSS values for the DISCERN sample and for

all other companies over time. The patents in the DISCERN sample are more valuable on

average. They also show a much larger increase in the Dot-Com Bubble years.

This strong, and arguably exogenous, increase in patent value in the years 1996 to 2002

make it di�cult to estimate the (time-invariant) �rm �xed e�ect. For example, if we estimate

the �rm FE using dummy variables and OLS, OLS will give disproportional weight to the

very high values in the Dot-Com period.

Consistent with the idea that the Dot-Com period poses a statistical problem, we drop

companies a�ected by the bubble in column 4 and �nd a science premium of 8%. To identify
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companies a�ected by the bubble, we use the price-to-sales ratio in 1999 and sort companies

into terciles based on the price-to-sales ratio. Companies in the highest tercile we call "bubble

companies.� Using data from Compustat, we classify 39,018 patents as belonging to bubble

companies and 645,398 patents as belonging to non-bubble companies. 62,222 patents we

cannot classify as either price or sales data are missing. This approach is similar to the

method of Brunnermeier and Nagel (2004) and Greenwood and Nagel (2009), which identify

stocks a�ected by the Dot-Com bubble.

To be able to keep all data of all years, we next address the problem using a statistical

adjustment. In Column 5, we scale the KPSS values with the the mean of the KPSS value in

a issue year and 4-digit CPC technology class. This strategy is inspired by Hall et al. (2001),

which suggests scaling forward citations by the average of forward citations in a technology

class and year. This rescaling purges any common systematic movement of KPSS value over

time and technology, i.e., also the e�ect of the Dot-Com Bubble. It also purges di�erences

in value by patent cohort. Yet, as we are interested in the science-premium within a year

and technology, we think this is acceptable. If we use scaled dollars as outcome, we �nd a

science-premium of 14% in terms of scaled patent values in column 5.

In column 6, we use an indicator of whether the KPSS value of a patent is in the Top

10% of patents in an issue year and a 4-digit technology class. This transformation again

levels di�erences between patent cohorts. Using this outcome we �nd that science-based

patents are 19% more likely to be in the Top 10% of KPSS values in a given issue, year and

technology.

In columns 1 to 6, we used �xed e�ects based on a weighted regression as discussed in

Section B.3 to address the problem of multiple patents of a �rm per issue date. In columns 7

and 8, we only keep the �rst patent per �rm and issue date in our sample. Then we estimate

the �rm �xed e�ect directly in the main regression. In column 7, we �nd a science premium

in terms of Top 10% patents of 6%. In column 8, we use all distances to science as the

independent variable and �nd a science premium of 10% relative to D=4 patents.
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To summarize, we can closely approximate the results of Arora et al. (2021a) with our

data. The reasons that we obtain di�erent results are two-fold. First, we compare D=1

patents relative to D=4, while Arora et al. (2021a) compare D=1 patents to all other patents.

Second, Arora et al. (2021a) use a US only sample, while we use the full sample of Kogan

et al. (2017). It is di�cult to estimate �rm �xed e�ects in the US-only sample due to the

relatively larger importance of the Dot-Com Bubble. If we account for the Dot-Com bubble,

we also �nd in the US sample a sizable science premium.
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Figure A.2: KPSS values

This �gure shows the KPSS value for the DISCERN sample and for all other companies.
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B.4 Split by technology

One concern might be that the observed e�ects are driven by a single technology that bene�ts

particularly from science. This is not the case. In Figure A.3, we show the main graph

separately for broad technology categories measured by one-digit CPC classes. Panels (a)

and (b) show the raw data. In Panels (c) and (d) we normalize by the average values

of patents in the same four-digit CPC technology classi�cation and �ling year. For all

technologies, there is a decrease in value by distance-to-science, most pronounced for drugs

and chemicals. Results by other technology classi�cations such as the classi�cation in Hall

et al. (Hall et al., 2001) and Schmoch (Schmoch, 2008) are available from the authors on

request.
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Figure A.3: Sample splits by technology

In this �gure, we split patents by broad technology �elds measured by one-digit CPC classes. In Panels (a)
and (c) we show the raw data. In Panels (b) and (d) we normalize by the average patent value of a patent
in the same four-digit CPC class and �ling year with a distance of four.
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B.5 Comparing Patent and Scienti�c Article Text

One potential concern one might have about our estimation of the science premium of patents

is that the distance-to-science calculated by citations might measure not only how much a

patent uses science but also the quality of the inventor. A high-quality inventor might be

more aware of scienti�c research and therefore include more citations, but without actually

using science.

To see whether patents close to science make use of its content, we compare the texts of

scienti�c articles and the text of patents. We calculate the pairwise text similarity between

a patent and the articles cited in the patent. Then we take the maximum over all the

similarities of a patent to its cited articles to determine the distance to the closest article.

To calculate the similarity between the abstracts of the article and of the patent we use the

�term frequency-inverse document frequency� (tf-idf) method.33

The results presented in Column 7 of Table A.4 show that patents with a citation distance

of D=1 have a higher text similarity to scienti�c articles than patents more distant to science.

This suggests that citation distance re�ects indeed how much a patent is related to science.

Consistent with the idea that patents with more scienti�c content have a higher value,

Column 8 shows that the value of a patent increases with its text similarity to scienti�c

articles. This suggests that the relation between citation distance and patent value presented

as our main result above is not a result of a spurious correlation driven by third factors that

are unrelated to the scienti�c content of the patent.

B.6 Using Ahmadpoor and Jones distance-to-science values

In Figures A.4a and A.4b, we use the distance-to-science measure based on the data of

Ahmadpoor and Jones (2017). The data of Ahmadpoor and Jones (Ahmadpoor and Jones,

2017) is based on Web of Science while our measure is based on the data of Microsoft

33We use the �gensim� implementation in Python for our calculations (see: https://radimrehurek.com/
gensim/).
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Academic. There are two main di�erences. First, Ahmadpoor and Jones (Ahmadpoor and

Jones, 2017) have many more unconnected patents (165 thousand unconnected patents out of

0.8 million overall patents) than we do (54 thousand unconnected patents out of 1.1 million

overall patents). Second, we aggregate the patents with a distance larger than 5 as the

number of patents goes down dramatically for larger distances. We �nd the same overall

pattern; i.e., the patent values decrease in percent relative to D=4 with distance-to-science.
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(a) Ahmadpoor and Jones (2017) distance
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Figure A.4: Value of patents by distance-to-science

Panel (a) shows the average patent value for all distances to science relative to patents with a distance of 4
(D=4). The values of U.S. patents are from Kogan et al. (2017). The distance-to-science of U.S. patents is
from Ahmadpoor and Jones (2017). In Panel (b), we residualize the patent value by the average value of a
patent with the same (four-digit) CPC technology class and �ling year and a distance of four, then display
relative (%) values indexed to D=4.

B.7 Number of citations to science and value

Our primary measure of distance-to-science does not account for the intensity of citations to

science. A patent that cites one single scienti�c article and a patent citing dozens of journal

articles both end up in the (D=1) group. To investigate whether the number of citations to

scienti�c articles is correlated with patents' private value, we use number of cited articles as

an alternative distance-to-science measure.
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Appendix Figure A.5 shows the results of this analysis. Both panels graph Kogan et al.

(2017) values for di�erent numbers of citations to scienti�c articles. The size of each obser-

vation circle is proportional to the number of observations for each value of �number of cited

articles.� The modal patent has no citations to science. Panel (a) displays the raw averages

and shoes a fairly steady increase in average value as the number of cited articles increase.

In Panel (b), we residualize values using the average value of patents in the same tech-

nology class and �ling year. The residualized values show a similar pattern up until seven

cited articles, after which the values move more erratically. Notably, patents with more than

10 cited articles have an average value closest to patents with merely one scienti�c citation.

We cannot pinpoint the exact reason for the drop o� in residualized values beyond 10

citations, but we can speculate. Within some technology classes, a large number of scien-

ti�c citations may be indicative of a patent being a more incremental innovation. Relying

extensively on a series of past discoveries could mean that the patent is situated in a more

mature and crowded technological space. While reliance on science is generally valuable in

those technology classes, excessive citations might signal a narrowness or lack of novelty that

reduces the patent's private value. Such a pattern is in line with Krieger et al. (2021), who

�nd that drug candidates that are highly similar in structure to prior drugs have lower KPSS

patent values.

More generally, the number of scienti�c cites among the (D=1) is a noisy measure of how

reliant a paper is on science. Some sub�elds simply have a norm of more citations Marx and

Fuegi (2020). Additional citations in those �elds are more likely to be ceremonial in nature.

In such high citation scienti�c areas, we do not expect more citations to correlate with higher

private value, nor relying any more on science than in areas where citing patterns are more

selective.
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Figure A.5: Number of articles cited and patent values

Panel (a) shows the average patent value and patents are split by the number of scienti�c articles cited in
the patent. The data on non-patent citations is from Marx and Fuegi (2020). In Panel (b), we residualize
the patent value by the average value of a patent with the same (four-digit) CPC technology class and �ling
year and a distance of four.

B.8 Patent Tail Outcomes

Our primary regression results look at how average patent values vary with distance from

science (Table 1). However, as we see in Figure 1 (Panels (b) and (d)) The increase in

value due to science also comes with an increased likelihood of tail outcomes accounting
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for technology and year. In Columns 5 and 6 of Appendix Table A.9, we investigate the

likelihood that a patent is in the top 5% or bottom 5% of the distribution of the science

component as an outcome. The distribution is taken over all patents. Patents that are closer

to science have a higher likelihood to be in the tails of this distribution. So, accounting for

the technological component, science-based patents show a larger variance in values.
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B.9 E�ects over the entire value distribution

The main paper shows that average patent values decrease with distance to science relative

to the average value of a patent with the same �ling year and the same (four-digit) CPC technology

classi�cation with a distance of four. This pattern is already visible in the raw data in Figure

A.6a. In Figure A.6b we show the value by distance of science over the 25th, 50th and

75th percentile of the value distribution. We residualize each percentile with the same

percentile of patents with D=4.34 The patent values are falling with distance-to-science over

all percentiles. This con�rms that our results are not driven by outliers.

(a) Raw data
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Figure A.6: E�ects over the value distribution

Panel (a) shows the raw data for patent values by distance-to-science data for a 10% sample of patents. The
values of U.S. patents are from Kogan et al (Kogan et al., 2017). The distance to science of U.S. patents is
calculated with Marx and Fuegi Marx and Fuegi (2020) and Patstat using the method of Ahmadpoor and
Jones (Ahmadpoor and Jones, 2017). The distance-to-science is de�ned by citation links. A patent that
directly cites an academic article has a distance of D=1. A patent that cites a (D=1)-patent but not an
academic article has a distance of D=2. Patents are de�ned as �Unconnected� if there is no citation link to
an academic article. In Panel (b), we show the average patent value for all distances to science along with
the number of patents in each distance. Panel (b) shows the 25th, 50th and 75th percentiles of the patent
value distribution by distance-to-science normalized by its percentile at a distance of four.

34Here, we do not account for technology and year, as for many technology-�ling year combinations there
are not enough patents to obtain a distribution for every distance-to-science.
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B.10 Alternative measures for novelty

New words and word age

In our main speci�cation, we measure how likely or unlikely the word combinations used in

a patent are to determine the novelty of a patent. In Figures A.7a and A.7b, we use the

data of Arts et al (Arts et al., 2018) to calculate two alternatives measures for novelty. The

�rst measure indicates whether a patent has a new word. A word is new if it was not used in

any patent before. Figure A.7a shows that the share of patents with a new word decreases

monotonically with its distance-to-science. The second measure is the average age of words

used in a patent. We calculate the age of a word by calculating the di�erence between the

�ling year and the �ling year of the patent in which it was �rst used. The average word age

is systematically lower for patents that are closer to science (Figure A.7b). If word age is

indicative for the age of the ideas they encode, patents closer to science contain more novel

ideas.

Both of the alternative novelty measures are positively related to patent value. Figure

A.7c compares the patent value for patents with and without new words for each year,

controlling for technology × year �xed e�ects. From 1980�1998, we see that patents with

new words have a positive (average) value premium over those without new words. Then,

from 1998�2000, patents with new words are actually less valuable on average. Presumably

this period featured a lot of highly valued, but (relatively) low novelty software patents

without new words. Firms may have been able to capture value from �jumping on the

bandwagon� with software patents in that brief period, but the �bursting� of the dot com

bubble in 2000 suggests that many of those software patents were indeed overvalued in the

longer run.

Figure A.7d shows the relation between the average age of words of a patent relative to

the year and technology class and the residualized patent value. We see a negative relation

between patent value and the average age of words.
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Chemical Patents and Compound Novelty

A potential shortcoming of measuring novelty with text analysis is that inventors and patent

lawyers have many degrees of freedom in choosing words. Word or word combination novelty

might re�ect the author's preferences or popular tech buzzwords, moreso than innate qual-

ities of the invention. Endogenous language choices might erroneously hide or suggest true

novelty (e.g., consider the use and abuse of word combinations involving terms like �crypto�

and �arti�cial intelligence� over time). To avoid the pitfalls of using language to measure

novelty, ideally innovation scholars would have standardized and quanti�able measures of

technological similarity for all technology classes over time.

While such standardized novelty measures do not exist for most technologies, chemical

patents allow for such structured measures of invention qualities. We use the crosswalk of

patents-to-compounds from SureChEMBL, which extracts the standardized (SMILES code)

chemical structures represented in patents.35 Patents often have more than one chemical

described in their claims, and these chemicals need not be the central component of the the

new invention.

One way that chemists quantify the similarity of two given molecules is to calculate their

share of overlapping fragments as a �Tanimoto� (or Jaccard) chemical similarity score from

zero (no overlap) to one (total overlap). Using the general approach described in Krieger

et al. (2021) and with the aid of the ChemmineR package (Backman et al., 2011), we calculate

all the maximum pairwise (backwards) similarity between each of the compounds in a given

patent and all previously patented chemicals from the same 3-digit CPC class. The average

maximum similarity to prior patent chemicals is 0.86 with a median of 1. This general lack of

novelty is unsurprising since patents contain multiple compounds and inventive novelty might

come from recombination of existing compounds or complementary technologies claimed by

the patent. Thus, our chemical similarity measure is a conservative measure of novelty.

35The data includes 187,958,584 patent-compound pairs from 1960�2014. For more information on the
data see: http://chembl.blogspot.com/2015/03/the-surechembl-map-file-is-out.html.
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As a robustness check on our main results, we merge the chemical patent similarity

measures to our main analysis data set and evaluate the 58,668 public �rm chemical patents

in our data. Table A.8 presents the results. Controlling for technology (4-digit CPC) ×

year �xed e�ects, we �nd that chemical similarity to past patents is negatively associated

with KPSS dollar values (Column 1). In Column 2, we show that the most novel compounds

(those with backwards similarity < 0.25) have a $5.35 million higher average KPSS valuation

than less novel chemical patents.

Finally, in Column 3 we evaluate the association between distance-to-science and chemical

patent novelty. Compared to (D=4) patents and controlling for technology (4-digit CPC) ×

year �xed e�ects, (D=1) and (D=2) patents have lower similarity (more novelty) on average.

Interestingly, patents totally unconnected to science also tend to have less similarity to past

patented chemicals, while the other distance groups show no di�erence from (D=4). This

pattern mirrors the relationships we �nd using the new words and word age measures (Figures

A.7a and A.7b), where unconnected to science patents also exhibited greater novelty than

the (D>3) groups.
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Figure A.7: Value and novelty

Panel (a) shows the share of patents that have a new word by distance-to-science. A new word is a word that
has not been mentioned before in a patent according to the data of Arts et al (Arts et al., 2018). In Panel
(b), we plot the average word age by distance-to-science. The age of a word in a patent is the di�erence
between the �ling year of the patent and the year the word was �rst used in a patent. In Panel (c), we plot
the average percentage di�erence in dollar value of a patent with a new word relative to a patent without a
new word within the same �ling year and (four-digit) CPC technology class over time. In Panel (d), we plot
the average word age and the average patent value. The word age is relative to the mean of patents in the
same �ling year and the same (four-digit) CPC technology class.
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(1) (2) (3)
Outcome: Dollars Dollars Chemical Similarity

Chemical Similarity -4.85
(2.36)

Most Novel Compounds 5.35
(1.99)

Zero Novelty Compounds -0.48
(0.74)

Distance 1 -0.037
(0.014)

Distance 2 -0.012
(0.0069)

Distance 3 -0.00081
(0.0044)

Distance 5 0.0052
(0.0058)

Distance >5 -0.0012
(0.0060)

Unconnected -0.060
(0.020)

Tech x Year FE Yes Yes Yes
Observations 60,009 60,009 60,009

Table A.8: Chemical novelty, patent value and distance-to-science

Notes: Table A.8 presents OLS regressions for the subset of patents associated with one or more chemical

structure. The patent to chemical crosswalk comes from SureChEMBL (www.surechembl.org), and chemical

similarity is calculated from zero (no similarity) to one (total structural overlap) based on Tanimoto scores.

Most novel compound patents are those with at least one compound with a maximum chemical similarity

to previously granted patents of zero or less than 0.25. Zero novelty compounds patents are those which

have no compounds with a backwards similarity less than 1. The omitted category is for patents with

between 0.25 and 0.99 chemical similarity to prior patents. The dependent variable in Columns 1 and 2 is

the (adjusted) KPSS patent dollar value. Column 3 presents the correlations between distance-to-science

and patent maximum chemical similarity to prior patented chemicals. All models have technology (4-digit

CPC) × year �xed e�ects.

B.11 Patent value by distance-to-science and novelty

Distance-to-science and novelty are correlated, however within distance-to-science group, we

still observe variation in novelty of word combinations. This variation allows us to explore

how patent value di�ers if we turn novelty �on� or �o�.� In Appendix Figure A.8 we compare

34



patent values by both distance-to-science and novelty. Speci�cally, we regress patent value

on interactions between distance-to-science and an indicator for whether patents are below

or above median novelty. Novelty is measured by the likelihood of pairwise combinations of

words that occur in a particular patents after account for technology class and �ling year

(i.e., the same novelty measure as Figure 2, Panels (c) and (d)). In Appendix Figure A.8,

Panels (a) and (b) graph patent values as percentage di�erences relative to the (D=4), low

novelty group, with and without technology × year �xed e�ects. Panels (c) and (d) show the

equivalent regression results, but reporting coe�cients in levels (millions of $USD), rather

than percentage di�erences.

We discuss the results at the end of Section 4.3.
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Figure A.8: Patent value by distance from science and novelty

Panel (a) shows the average patent value for all distances to science relative to patents with a distance of
(D=4), and separates by patents with above and below median novelty. Novelty is measured by the likelihood
of pairwise combinations of words that occur in a particular patents and we account for technology class and
�ling year. The values of U.S. patents are from Kogan et al. (Kogan et al., 2017). The distance-to-science of
U.S. patents is calculated with Microsoft Academic and Patstat using the method of Ahmadpoor and Jones
(Ahmadpoor and Jones, 2017). The distance-to-science is de�ned by citation links. The 90% con�dence
bounds are based on standard errors clustered by (four-digit) CPC technology class. In Panel (b), we
residualize the patent value by the average value of a patent with the same (four-digit) CPC technology
class and �ling year and a distance of four. We again plot seperate values for patents with above and below
average novelty. Panel (c) shows the average dollar value of patents in levels for all distances to science for
both below and above average novelty patents. Panel (d) residualizes dollar patent values by the average
value of a patent with the same (four-digit) CPC technology class and �ling year and a distance of four.
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B.12 Firm Heterogeneity: Science Intensity

We explore �rm heterogeneity in �rm's �science intensity.� We focus on two dimensions of

science intensity. First we consider �rms' propensity to cite scienti�c publications (reliance

on science), and second we examine in-house vs. external citations within the (D=1) group.

In Appendix Figure A.9 Panel (a) we show the distribution of patents across distance-

to-science, split by above and below median levels of �rms' �reliance on science.�36 Notably,

�rms above the median rely directly on scienti�c articles in just under 30% of patents. The

above median �rms have an interquartile range between 17%�53% for (D=1) patents in

any given year, as opposed to 0%�7% for the below median group. The modal patent in

both groups is (D=2), but the below median group is twice as likely to have patents with a

distance (D≥4).

Panel (b) graphs the coe�cients comparable to the speci�cation in Panel (c) of Figure

1. We regress KPSS patent values on distance-to-science and control for technology (CPC

4-digit) × year �xed e�ects, reporting di�erences relative to the (D=4) group. Here, we

additionally split the sample by whether the producing �rm was above vs. below median

in reliance on science intensity, and use the below median (D=4) group as the reference

group. Another di�erence from is that we report coe�cients in levels (dollars) rather than

percentages, because the average values are generally lower for the below median group, and

thus make percentage premia di�cult to interpret across the two groups. Instead, we focus on

the average marginal value (dollar) di�erences across groups. We �nd that (within technology

× year groups), above median reliance on science �rms gain an average of $1.98 million, while

below median �rms gain only $1.22 million. Under the assumption that the marginal cost of a

(D=1) project is lower for the above median reliance on science �rms�more experience and

expertise in using science for invention�the di�erence in pro�tability of a (D=1) project

across the two types of �rms is likely even greater. Thus, these patterns would reinforce

36We de�ne reliance on science intensity as the �rm's % of (D=1) cumulative patents, normalized by year
(the median percentage changes over time).
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di�erences in reliance on science rates, unless the long-term bene�ts of investing in science

were inspires low reliance �rms towards more (D=1) invention as a longer term investment

in absorptive capacity.

Next, in Appendix Table A.10 we show the additional value associated with in-house

(D=1) citations to science. Each speci�cation suggests that when �rms invent by building

o� scienti�c publications authored by their own scientists, those patents are associated with

substantially more KPSS dollar values, after controlling for technology × year �xed e�ects.

Columns 3 and 4 show that both high (above median) reliance on science and in-house (D=1)

publications are associated with greater patent value. Our most saturated regression in the

table (Column 5) interacts distance-to-science groups with whether the �rm is below/above

the median in reliance on science, and then further interacts the (D=1) groups by whether

they cite in-house publications. Those coe�cients show that high reliance on science �rms

generate more average value when they invent based on their own scienti�c publications than

do �rms building on in-house publications, but who less frequently use science in invention.
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Figure A.9: Patenting Rates and Values, by Distance-to-Science and Firm (D=1) Intensity

Panel (a) shows the percentage of patents for each distance-to-science, by whether the assignee �rm was
in the above vs. below median of percentage of (cumulative) patents that build directly on science (D=1).
Panel (b) shows the average KPSS value for the above vs. below median groups and by distance-to-science.
The baseline group is (D=4) for below median reliance on science �rms, such that the y-axis should be
interpretted as incremental value relative to that group's average value. The underlying regression controls
for technology and year �xed e�ects.
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(1) (2) (3) (4) (5)
Dollars Dollars Dollars Dollars Dollars

Distance 1 0.92 2.17 1.39
(0.35) (0.42) (0.36)

Distance 2 1.89 1.45
(0.31) (0.32)

Distance 3 0.70 0.56
(0.19) (0.20)

Distance 4 ,

Distance 5 -0.13 -0.10
(0.15) (0.17)

Distance >5 -0.33 -0.14
(0.18) (0.18)

Unconnected -0.088 -0.05
(0.22) (0.22)

In-House Publication (D=1) 8.41 8.45
(3.15) (3.15)

High Reliance (Above Median) 4.44 4.29
(0.52) (0.51)

High Reliance, In-House (D=1) 7.99 7.83 7.81
(3.02) (3.14) (3.18)

Low Reliance, In-House (D=1) 2.19 2.33
(0.78) (0.87)

Tech-Year FE Yes Yes Yes Yes Yes
Distance X High/Low Reliance No No No No Yes
Obs. 1147779 1147779 1098452 1098452 1098452

Table A.10: Firm Heterogeneity: Science Intensity

This table shows the distribution of patent values by distance-to-science and �rm scienti�c intensity. All
outcome variables are in dollar terms based on KPSS patent values. Column 1 reports the (D=1) premium
and the additional value for (D=1) patents that cite publications authored by scientists employed at the same
�rm as the patent assignee (�in-house�). Column 2 adds in additional coe�cients for distances to science
D>1. Column 3 shows the average premium for �rms with �high reliance� on science (above the median
in �rm's percentage of patents with D=1 in the given publication year), as well as the interaction between
high reliance and (D=1) in-house patents. Column 4 and 5 further include the interaction between (D=1)
in house patents and and indicator for �rms that have�low reliance� on science (below the median in �rm's
percentage of D=1 patents in given year). The standard errors are clustered at the CPC (4-digit) technology
class level.
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